

Rachneet Kaur, Karthik Venkata, John Nguyen, Clara Schaye, Daniel Yee, Rachel Zilz, Daniel Block, Kevin Thompson Faculty Advisors: Prof. Richard Sowers, Prof. R. Sreenivas

CSL Conference, Feb 2018

Optimal IoT control in Smart Homes

Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana Champaign

Some Notations

- \overline{P} Retroactive averages for any usage in time interval (t-60, t] $\bar{P} = \frac{1}{12} \sum_{i=0}^{11} P_{t-5i}$
- $T_{runtime}$ Cycle running time for the appliance
- δ $\frac{1}{12}$ (5 minutes)
- \triangle 24 (a days' worth of time)
- $T_{min} = 1$, $T_{max} = 5$ (Activate time between 11 PM and 5 AM)
- $N = \{T_{min}, T_{min} + 1 \dots T_{max}\}$
- D_c No. of days in the past to train policies

Argmin Policy

- Find the most frequented times of least prices from the past.
- d days ago, τ_d was the cheapest time:

$$\tau_d = argmin\{\bar{P}_{n-\Delta d} : n \in N\}$$

• Frequency count of the τ_d 's:

$$F_n = \frac{1}{D_c} \sum_{d=1}^{D_c} 1_{\{\tau_d = n\}}$$

 Activate the appliance if $F_n = \max\{F_{n'} : n' \in \{n, n+1 \dots T_{max}\}\}$

Hybrid Model

• Optimal time to decide activation = $\delta J_{maxinfo}$ where:

$$J_{maxinfo} = \left[\frac{1 - T_{runtime}}{\delta}\right] - 1$$

- Decision Interval:
- $D_n = (n 1 + \delta J_{maxinfo}, n T_{runtime})$
- Seasonality using historical averages:

$$\bar{P}_n^H = \frac{1}{D_c} \sum_{d=1}^{D_c} \bar{P}_{n-\Delta d}$$

- Initial Regression:
- Known spot prices for current hour $\{P_{n-1+j\delta}\}_{1 \le j \le J_{maxinfo}}$
- Historical averages (\bar{P}_n^H)
- Hourly Regression:
- Prior 5-minute spot price (P_{n-1})
- Historical averages (\bar{P}_n^H)

Optimal Stopping Policy

- Constructed: Forward Direction
- Evaluated: Backward Direction.
- The Exercise price (\bar{P}_n^E) of consuming energy is computed at each of the future nodes.
- Continuation value $(V_n) = \infty$ at end node.
- Continuation value $V_n = E[\bar{P}_{n+1}^E \wedge V_{n+1}]$ for $n < T_{max}$.
- Optimal Time: Exercise Price < Continuation Price: $\tau^* = Min\{n : \bar{P}_n^E < V_n\}$ where $V = E[\bar{P}_{\tau^*}^E]$

ge prices)	Mean (policy prices)	Average Savings
73	1.86045	9.2 %
73	1.83445	10.5 %