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Introduction

Goal
Our goal is to explore a Brain Computer Interface (BCI) approach to examining changes
in anxiety while walking in a vast virtual world. We are creating virtual reality (VR)
components of a testbed for understanding responses to visual stimuli and their relation
to movement disorders such as Parkinson’s disease.

Materials and Methods

Setup
Our experiment uses the following equipment and software:
•Motek C-MILL Treadmill,
•Unity3D (we code in C#),
•HTC Vive virtual reality headset,
• EEG cap with 64 electrodes,
• Brain Vision PyCorder for signal capturing,
•Open Vibe,
• Python 3.6,
• Zephyr hxm bt wireless as the heart rate monitor

Network Layout
Our experiments are run in a lab in Freer Hall. We use several computers, connected
over a local network:
•One connected to treadmill, streaming the treadmill’s motion data over the network
•One running the game software, rendering the graphics to the virtual reality headset
•One capturing the EEG signals and running Open Vibe to do data analysis in real time

Virtual World
We designed the virtual world in Blender, an open source 3D modeling program. The
world consists of separate slices, each slice 100 meters long. The software allows one
to create world from pre-made slices by selecting them and putting them in order. The
building of the world is done in virtual reality, with the designer grabbing and positioning
the slices using an HTC Vive controller.

During the experiment, the user walks through the world that was built. An infinitely
extending bridge, consisting of pieces that mimic a metal grid, form the surface that the
user walks on. Depending on the shape of the terrain the user is walking on, this bridge
may float just above the ground, or high up above.

Fig 1: A screen shot of
assigning weights to terrain
vertices in Blender

Implementing Adaptive terrain
We animate the shape of the terrain to adapt to the user’s anxiety:
• The terrain mesh is rigged in Blender, the way this is usually done for character anima-

tion. Vertices are set up to be influenced by controls moving along splines.
• Vertices in the terrain model are assigned different weights so that they can move with

the bones proportionally to their weights.
• These files are imported into the game software, in order to vary the shape of the terrain

in real-time based on data gathered from the EEG.

Data Logging
• The distance from the Player’s current position to the the bottom of the terrain using

Ray-casting Techniques in Unity3D.
• The real-time estimated anxiety level through EEG signal processing.

Fig 2: A screen shot of log-
ging the distance from the
player’s position to the bot-
tom of the terrain

Heart Rate Monitoring
• Implemented real-time communication between C# and heart rate monitor
•Constructed graphical user interface to display real-time heart rate
• Implemented real-time adjustment on the ”scary-level” of terrains according to user’s

base heart rate

EEG Analysis
The following steps constitute processing of the recorded raw EEG signals:
•Refine the signals using a bandpass least squares filter
• Filtered data is epoched. Reject artifacts in the signals.
• Independent Component Analysis (ICA) is performed on the epoched dataset.
• The selected good components are back projected to extract features.

Fig 2: A team member walking on
treadmill with VR headset while we
record EEG data, possibly anxiety-
correlated electrical activity

Finite Impulse Response Filter
• To get rid of environmental factors, FIR filtering is performed.
• Signals with frequency between 1Hz and 45Hz are filtered out from setting band pass

in fast Fourier transformation.

Independent Component Analysis
• Input: signals which are combination of 64 components
• Effect: Extract 64 independent components from mixing signals, and get weighted ma-

trix
• sk = (w(T ) ∗ x) where w is the weight matrix

Fig 3: Left: Filtering of the raw data
Right: ICA of the mixed signal

Fig 3: Left: Noisy power spectrum plot suggests no evident activity in 8-12 Hz Frequency
range. Right: Heat map indicates even concentration from all channels. The spectrum plot
is smooth and shows a jump at 10Hz, followed by a steady decay. These are strong signals
to include it in the EEG analysis.

Figure 3: Left: An overview of individual channel components rejected by their map.,
Right:Power spectrum plot for channel F3 and F4

Results and Discussion

•Rigged a terrain in Blender to be able to adjust its shape in real-time, in order to adjust
to the user’s anxiety.
•Used background thread to communicate with a server over TCP to gather anxiety

information.
• Established network communication between the VR software and the signal process-

ing software over UDP.
•Demonstrated the feasibility of identifying changes due to anxiety from high density

EEG data while subject walks in a virtually infinite world.
• Built data pipeline between virtual reality side and signal processing side

True Positive True Negative False Positive False Negative Error
1.000± 0.000 0.971± 0.050 0.029± 0.050 0.000± 0.000 0.013± 0.030
0.952± 0.082 1.000± 0.000 0.000± 0.000 0.048± 0.082 0.007± 0.015
1.000± 0.000 0.971± 0.050 0.029± 0.050 0.000± 0.000 0.013± 0.030
0.553± 0.062 0.452± 0.188 0.548± 0.188 0.447± 0.062 0.503± 0.108

Table 1: Results for five different approaches. In order, they are: Log Bandpower, Common
Spatial Patterns (CSP), Filter-Bank CSP, Spectrally weighted CSP, Windowed Means.

Future Research

Extensions
•Dynamically vary several terrain parameters based on anxiety predictions through EEG

and physical signals like heart rate.
• Adaptation of the virtual world to the user’s anxiety level leading to decrease in their

anxiety levels in balance demanding walking conditions.
• Efficient and proper data normalization of the anxiety feedback values since it may vary

significantly among different users.
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