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Abstract

» Multi expert multi criteria decision making problems
(MEMCDMP) seek to choose the optimal alternative among
the finite number of alternatives available based on the
evaluations of a set of experts on certain prefixed criteria.

» We assume that the criteria are described by the decision
maker in form of linguistic expressions, like, very good, good,
fair, bad, worst, etc.

» The idea is to develop the model which can aggregate the
expertise of all decision makers in form of linguistic variables
to come up with the optimal ranking of finite alternatives.

Linguistic variable

CW - Words and propositions are objects of computation like

small, medium, big, heavy, light etc.
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| LINGUISTIC VARIABLE: |
N

. LEGEISTIE VARIABLE is a variable whose values are expressed m nguistic terms.

» It’s Values are not mumbers but words or propositions from natural language.

= Usedto deal with qualitative or fuzzy expressions (The Bulding 1s tall )
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L— Name of the variable e e -
T(L) — Term set (A collection of Linguistic vahies)
U— Umwverse of discourse
S —  Syntactic rule to generate terms in T{ L) :
M —  Semantic rule to associate each hnguistic value X to its meanmng M(X) which is a fuzzy set.
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2 tuple representation of linguistic data |1

»Let S = {sp, s1,,5;} be the linguistic term set of cardinality
g+1.
Let 8 € [0, g| be the result of the aggregation operation
Then, 2 tuple equivalent to (3 is given by:

A: [0, g] > S X [-0.5, 0.5)

AP)=(s;, o) with

—_—

i=round (PB)
a=p—-i
ae [-0.5,0.5)

-"\—\_

» Numerical equivalent to (s;, ) is given by:

A':SX [-0.5,0.5) > [0, ¢]

Als,0)=ita=p
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"1 {50s 51» 5 53_S, S5 Sg) be the Iinguistic term set with cardimality 7.

- h}" sin g aggtegaﬁﬂﬂ operator we obtamn the result

A(P)=A(2.8)= (s;,0)

=(53.-02) — = GRAPHICALLY, |
i=round (ff)
oG | L
a=p-1 -
=2.8-3
=-0.2 /
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Comparision operator
.1]- COMPARISON OF 2 TUPLES:
(LEXICOGEAPHIC ORDER)

LET (s;, @;) AND (s;, ;) BE TWO 2-TUPLES:

= Ifi<) EXAMPLES:
Then (s; op) < (55 @)

(53. 0.4) < (54, 0.2)
. fi=janda=a, -

Then (s;. a1) = (5;. o)

(55.04)=(s5.04)

= Ifi=jand ;< a,
Then (s;. o1) < (55, o)

(55.0.3) < (55, 0.4)

(55, 0.3) > (55, 0.1)

= Ifi=jand o> oy
Then (s, a;) > (5. ap) </
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Arithmetic mean operator
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1)2-TUPLE LINGUISTIC ARTTHMETIC MEAN: |

Let

X = {(51- ). (52 0., (50 00)}
be set of linguistic 2 tuples. Then 2 tuple arithmetic mean is defined as:

Xapan =4 (::E'f’::l A7 (s, )
= A (ZZL.B)

EXAMPLE:
Let S = {sq, 51, 52 53_S4_Ss_Sg)
X ={(51.0.4). (55.0). (54.-0.4). (5,.0) }

X{.—'I._"l.ﬂ = .ﬂ[ (ﬂ_l{ﬁl,ﬂ_‘"} 2 ﬂ_l {53,‘[}} sk .ﬂ_l {54,—'[}4) + .ﬂ_l{s_q,ﬂ)) ."I 4 ]
—A[(14+3+36+4)/4] = A(3) = (5,.0)
D = A /=

Ordered weighted averaging operator

|
3)2-TUPLE LINGUISTIC ORDERED WEIGHTEDAVERAGE (OWA): |

Let X = {(s;. o). (52 @), (53. @3}, ............ (S, 0y)} be set of linguistic 2 tuples.

Each value x; has a weight associated w, indicating its importance
But

THE ASSOCIATED WEIGHTS ARE NOTPREDETERMINED BUTASSOCIATEDTOA
DETEERMINED POSITION.

Let W= {w; Wy Wy, _____. _W, | be associated weights,
GEW1£I = Ewi =1.

Then2 TUPLE ORDERED WEIGHTED MEAN is defined as:

Xowa =4 (Xy=q Wr Br)
where B, is the r * largest value of p: "

s — \
Power averaging operator
/ I /. LN

(D2 TUPLE LINGUISTICPOWER AVERAGING OPERATOR (2TLPA):

Let {(r; o). (r; ap)... .. (ry oy)} be the set of Inguistic 2 fuples,
Then,

ﬂl:1+T{'i'-i,EE-i ]].ﬂ.-ll:Ti,ﬂii ::I
2TLPA((ry, @), (12 @)y (1, 0)) = AP0

where T(r;, a;) = X7, ;. Sup((ry, ), (1, 0p)

Sup((r.a). (rpe;)) DENOTES THE SUPPORT OF (r,a). (1;.0)) .

Support is similarity index between the
It is any function satisfying the following 3 properties: linguistictuples, more the similarity
1) Sup((r; @), (rpe) €[0.1] i o

2) COMMUTATIVE: Sup((r; ai), (r,0)) = Sup({r.).(r, 0:))

3) Sup((ry, @), (r3.09)) = Sup((re.ey), (reey) if d((r, a), (rpe) = d((ree). (o). :
Where d is the distance between the inguistic variables.

— —r—
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Ordered weighted power averaging operator

N N
(2) 2 TUPLE LINGUISTIC WEIGHTED POWER AVERAGING OPERATOR (2TLWPA):

Let {(r w1). (rz, o3).-... {1y on)} be the set of ingustic 2 fuples,

Let W = {w] w3 W3,....Wn} be associated weights,
0=wi=1,%Fw =1

Then,

) )+ Tir o VAL YW
2TLPWA ((ry, 1), (rz j0z),..., (rp, 0p)) = A( = E%Eﬁix- ﬁT =

SPECIAL CASE:
+ FW={Z,.. 2}, Then2TLWPA = 2TLPA .

{ When all the Decision makers are of equal importance, then 2TLWPA = 2TLPA. |
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Interval 2 tuple linguistic representation

| "

INTERVAL 2 TUPLE LINGUISTIC VARIABLES:

Let S = {sg, 5y,.... 5 be the linguistic term set.
An INTERVAL 2 TUPLE LINGUISTIC VARTABLE composes of two 2 tuples:
Denoted by [ (s @), (5 ) 1. (55 00) = (5. @)

The Interval 2 tuple that expresses equivalent information to
nterval value [B1. B2]. 1= B2 is given by:

AlB1. B2] = [ (si @), (i, 05) ] with [ i=round (B1.g)
j =round (p2.g)

- ‘ —0.5 0.5
w=p——.me[—. — —
P g [9 g}
' —0.5 0.5
uj=Eu—i,qu[—g F} \../‘
— e )

N
« Function A! converts interval 2 tuples back to interval value [[,. B,]:

A (s @), (5 0) ] =[ = +o:  +0 ] = [By. Bol.

REMARK : |

If (s;. @) = (5. oy) then the Interval 2 tuple linguistic variable [ (s, os). (s;. oy} ] reduces to 2 fuple
linguistic variable (s;, o).

INTERVAL2 TUPLE WEIGHTED AVERAGE (I2TWA):
Let X = { [(51. op) (f1. £1)] .- --. [(55. o) (L,. €4)] } De the set of interval 2 tuples
W= {w, wyw;,...w,} be associated weights .

DEW{':_:]., Ew{=l

Then,
Interval 2 tuple weighted average is defined as: |
DRTWA X)=A[ Y, wA ' (s, @), X, wA™ (L, &) ]

4 -
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 DISTANCE BETWEEN2 INTERVAL 2 TUPLES:

Leta=[(s;. oy) (ti. g)]and b= [(5,". ;") (t;". ;)] be 2 interval 2 tuples,
Then,

D(ab)=A([(A7(sse) — A (s, )" + (A7(t, =) — A7 (¢t £ ))])

1z the EUCLIDEAN DISTANCE betweena and b.

DISTANCE BETWEEN 2 SETS OFINTERVAL 2 TUPLES:

LetX, = { [(5;. o) (1. &1)].-. [{5n o) (ts =0)] ¥
X =161 o) (050 [0, 0w) (th.24')] 7 be 2 sets of interval 2 tuples,
Then,
D (X, X)) =A@, @) — A7 (5,a)) + @7t £) — A~ (£, D)D) v
is the EUCLIDEAN DISTANCE between X; and X,.
— T )
TOPSIS

L= Determine Interval 2 Tuple Linguistiu:.
Decision Matrices

| Aggregate Decision makers’ Opinions I

Construct Collective Weighted Interval |
2 Tuple Linguistic Decision Matrix

FLOW DIAGRAM OF THE
INTERVAL 2 TUPLE LINGUISTIC

TOPSIS ALGORITHM

Determine 2 Tuple Linguistic Positive
and Negative Ideal Sohution

—~.—

Compute Separation Measures of each
Alternative

‘ Calculate Relative Closeness Coefficient I

~—— (o
/

| Rank the Alternatives |
— N :

Hesitant fuzzy sets [3

» Let X be a set then Hesitant fuzzy set on X is a function
h: X — P(]0, 1]) that returns a subset of [0,1]. h returns a
set of membership functions for each element in domain.
When we consider non empty and finite HFS then it is THFS.

» Dual hesitant fuzzy set
Let X be a set then DHFS on X is defined as
D = {< x, h(x), g(x) > |x € X} where h(x) and g(x) are 2
sets of values in [0,1] denoting membership and non -
membership degrees of element x&€ X such that 0 < v,n <1
and 0 <"+ 71" < 1 where vy € h(x),n € g(x),
’VJF — MaXth(x){7}7 77+ — MaXnGg(x){n}‘
The pair (h(x), g(x)) is called DHFE.

» Hesitant fuzzy linguistic term sets (TFLTS)
Let S = {so, 51, ..., So} be a linguistic term set then HFLTS is
ordered finite subset of consecutive linguistic terms of S.
Hs = {si, Sit+1,...5;} such that s, € S5, k € (i to j).

Choquet integral aggregation operators for 2 tuple

linguistic data

» Linguistic group decision making problem with
interdependent attributes is optimized using Choquet integral
based aggregation operators.

» 2TLCA
Let {(r1, a1),(r, a2), ..., (rm, an)} be 2 tuple linguistic
arguments, X be the set of attributes, 11 be the fuzzy

measure on X then the 2 tuple linguistic correlated averaging
(2TLCA) operator is defined as follows:

2TLCA =A (Z(M(Ha(l)) o M(Ha(i—l)) A_l (rO(i)7 aa(i)))
=1
where (o(1),0(2),...,0(n)) is a permutation of (1,2,...,n)
such that (ry(iy, as(i)) = (o(i+1)» (i+1))
and Xo (i) s the attribute of (rg(,-), aa(,-)), Ha(,-) — {Xa(k)‘k < i}
for i > ]., Ha(O) — ¢
»2TLCG

n

2TLCG =n (H(A_l (roi aa(,-)))(“(Ho(f))—M(Ho(i—l))))

=1

Induced continuous Choquet integral operators |2

» If the information about the weights of the experts and the
attributes is incompletely known, consistency principle and
TOPSIS method are used to develop a model on the fuzzy
measures of experts and attributes which is solved to
compute the exact weights from the partial interval weights
already known for the experts and the attributes.

»If A= [} Q(y)dy then COWA = Fo([a, b]) = (1 — N)a + Ab
and COWG = Gg([a, b]) = atb".

» Induced continuous Choquet ordered weighted
averaging operator
ICCOWA is defined to aggregate a set of arguments of 2
tuples {< uy, [a1, 1| >, ..., < up, |ap, by >} as:

ICCOWA = Z(M(Aa(j)) — N(Aa(jJrl)))FQ([aa(j)a ba(j)])
j=1
where (o(1),0(2), ...,0(n)) is a permutation of (1,2,...,n)
such that u,(j) < uy(j41) and
As() = o), bolli < k < n}, Asnr) = &

» Induced continuous Choquet geometric mean
operator
ICCGM is defined to aggregate a set of arguments of 2 tuples
{< w, a1, 1] >, ..., < up,|an, by] >} as:

ICCGM = T [(Go([20(), bo(y)])) VA0 #{A0)

J=1

» From research point of view, currently we are working on the
theory of and trying to find an appropriate way to solve
linguistic linear programming problems, which are not already
present in the literature.
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