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Motivation
● Real-time brain computer interface (BCI) applications

○ Electroencephalography (EEG) is used for monitoring brain activity
○ Automating an EEG signal processing pipeline is imperative to the exploration 

of real-time brain computer interface (BCI) applications
○ EEG analysis demands substantial training and time for removal of distinct 

unwanted independent components (ICs), generated via independent 
component analysis, corresponding to artifacts. 

● Procedural way to identify and eliminate signal artifacts
○ The considerable subject-wise variations across these components motivates 

defining a procedural way to identify and eliminate these artifacts
○ An automated approach would greatly facilitate IC selection and hence 

EEG-based research beyond trained individuals



● Develop human postural control enhancement technologies
○ An automated independent component (IC) categorization would not only aid 

speed and consistency but also assist online EEG processing for 
brain-computer interfaces (BCI) to facilitate neural rehabilitation. 

○ Several studies have explored VR and EEG-based setups to provide insights 
into neural connectivity and adaptation [1]-[4]. VR and EEG-based setups 
require real-time artifact rejection to develop novel acrophobia therapies and 
human postural control enhancement technologies. 



Artifactual IC rejection
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Related works 
● ICLabel classifier (proposed in [5])

○ It estimates seven IC categories using DL with near-real-time classification of 
online-decomposed EEG data 

● However, there is a need to continue exploring the application of machine 
learning to automate IC classification of EEG data from noisy, visually 
stimulating and more real-world scenarios for future BCI applications



DeepIC-virtual
● We propose DeepIC-virtual, a CNN deep learning classifier to 

automatically identify brain components in the ICs extracted from the 
subject's EEG data gathered while they are being immersed in a virtual 
environment. 

● We examine the feasibility of DL techniques to provide automated IC 
classification on a noisy upright stance EEG data. 

● Ground truth labelling of generated ICs by a trained specialist was done 
by looking at all the four components of the IC representation diagram 
whereas a CNN discriminates brain components from artifacts only by 
learning on one of the components, i.e. the scalp topographical map. 



Experimental Setup

● Brainvision 64 Channel ActiCHamp EEG 
System 

● EEG signal recording software

● HTC Vive virtual reality headset 
● Force plate
● Python
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Experimental Setup
● The protocols for this study were approved under the Institutional Review 

Board number 17010. 
● Data collection design: a HTC Vive VR headset, a NeuroCom SMART 

Equitest Clinical Research System, a Brainvision 64-channel EEG head cap 
and a safety harness 

● VR assessment system: Real-time EEG data recording setup [1], while a 
subject stands quietly to height and depth alterations and induced 
perturbations. 

● Administrated pseudo-randomized virtual surroundings with varying 
height settings and induced 10-degree toe-down perturbations while 
recording the subject's EEG signals in a secure setting. 



EEG data 
collection setup: 
The training and testing 
data for this study was 
accumulated from a 
designed system with 
real-time EEG recording 
setup while a subject 
stands quietly to 
pseudo-randomized height 
and depth alterations and 
induced perturbations 



Study participants 
● 5 healthy young adults aged 20.4     0.80 years (2 females) and 1 male 

healthy older adult aged 79 years from the local community. 
● Four trials, individually lasting for 240 seconds with eight 

pseudo-randomly ordered height settings (ground level, 2.5, 5, or 7.5 
meters in height and in depth) in the virtual world during each trial.

● During two of the trials, 10-degree toe-down perturbations were 
induced at all height levels. 

● Subjects were instructed to stand still on the NeuroCom force plate while 
wearing the HTC Vive headset during the entire session. 



Data Analysis
● IC data generation 
● Types of ICs
● IC classification 



IC data generation
● Real-time EEG data from scalp electrodes were recorded at a 1000 Hz 

sampling rate. 
● The EEG signals, time-synched to the experiment in VR, were epoched into 

1 second segments and processed via a band pass finite impulse 
response (FIR) filter to refine any noises. 

● The filtered EEG, denoted by X, is a linear mix of source signals from 64 
head cap electrodes, hence ICA is performed to determine weights matrix 
W and statistically independent components (ICs) I.

● The separating weights matrix W is computed such that the statistical 
independence between the components of I = WX is maximized, over 
all invertible matrices W.



IC representation diagram
● A IC representation diagram comprising of the following was used by the 

specialists. 
○ a scalp topographical map depicting positive (red), negative (blue) and null 

(white) weights of the IC on 64 channels indicated by black dots
○ a power spectral density (PSD) diagram representing the power distribution 

of the IC's activity 
○ an event-related potential (ERP) 
○ a time series illustrating a section of the IC's activity

● ICs can be categorized as good acceptable ICs sourcing from the brain and 
bad removable ICs (further classified into 6 subtypes) that are vital to 
eliminate prior to performing further analysis on EEG [5]. 



Brain ICs 
● Brain components emerging from the cerebral mantle are identified as 

spatially coherent signals with broad and connected activation from 
numerous scalp electrodes. 

● Their PSD usually include an increase in the 8-12 Hz frequency range. 



An accepted IC: 
The heat map demonstrates 
coherent signals from 
multiple channels with red, 
blue and white colors 
depicting positive, negative 
and null weights 
respectively.



Artifactual ICs
● The artifactual ICs can be subdivided as

○ muscle components originated by motion of the muscles with a substantial 
proportion of activity in a solitary region,

○ eye components depicting blinks, vertical or horizontal eye movements, 
○ cardiac components denoting the activity of the heart, 
○ channel noise originated via damaged or disconnected scalp electrodes with 

strong magnitude on only one channel, 
○ line noise as ambient electric fields generally produced by the external 

sources, 
○ other artifacts as unacceptable ICs that do not constrain to the defined 

subtypes.
○ We define hard to decide class for ICs which were intricate and difficult for 

the specialist to assign to any one of the above mentioned categories.



A rejected muscle artifact IC: 
Restricted contribution in 
the scalp heatmap diagram 
can be observed.



IC distribution in our data 
● 1637 labelled ICs with 285 brain, 149 muscle, 83 eye, no cardiac, no 

channel noise, 146 line noise, 769 other artifacts and 205 hard to decide 
components

● After eliminating the 205 ambiguous ICs, we retained 285 and 1147 ICs 
classified as good and bad components respectively with an imbalance 
ratio of 1:4. 

● We identified components that are acceptable for EEG analysis (good 
brain ICs) from those which are not (bad artifactual ICs).



Deep learning-based approach
● Given the nuances in the ICs, significant training is required for 

researchers to carry out visual inspection and classification. 
● Advanced DL-based investigations may be an appropriate approach for 

automating the IC classification task. 
● IC ground truth labelling by a trained specialist was done by looking at all 

the four components of the representation diagram whereas a CNN 
discriminates brain components from artifacts only by learning on the 
scalp topographical maps without considering the other three 
components. 



IC classification
● 1432 scalp images were colored and 135x165 pixels in size
● Randomly stratified samples into 80% of data for training and 20% for 

testing 
● 1145 topographical maps in the training set, with 228 good and 917 bad 

ICs (112 muscle, 70 eye, 118 line noise and 617 other artifacts) 
● 287 maps in the test set, with 57 good and 230 bad ICs (37 muscle, 13 eye, 

28 line noise and 152 other artifacts)
● A supervised CNN architecture was utilized to categorize good brain ICs 

and bad artifactual ICs



CNN architecture
● 8 convolutional layers with ReLU activation, batch normalization, dropout, 

max polling 
● 2 fully connected layers with ReLU non-linearity. 
● Network was trained using the root mean square propagation (RMSProp) 

optimization scheme and the cross entropy loss function. 
● Xavier initialization assigned initial weights from a Gaussian distribution. 
● Class weights were assigned to loss function restraining the network from 

always selecting the majority class to boost accuracy. 
● The classifier network was trained for 100 epochs with a mini batch size of 

16 and with an adaptive learning rate initially set to 0.001. 
● Prediction efficiency for the classifier was weighed via the test set confusion 

matrix, accuracy, F1 score and area under curve (AUC). 



CNN architecture



Results 
● Test set binary classification 

accuracy of 89.20%
● F1-score of 0.783 
● AUC of 0.926
● Only 1 out of the 57 brain ICs 

was miss-classified as an 
artifact.

● Confusion matrix 
● ROC of AUC 



Confusion matrix 

Actual

good bad 

Predicted 
good True positive = 56 False positive = 30

bad False negative = 1 True negative = 200



Receiver operating characteristic 



Conclusions 
● Attained an accuracy and AUC of 89.20% and 0.93 respectively 

categorizing good versus bad IC topographical maps. 
● Most of the brain ICs are known to be topologically coherent structures 

with connected broad cortical activities. 
○ Thus, scalp topographical information may provide sufficient data for accurate 

automatic and objective IC classification. 
○ These motivate further exploration on how spatial topology plays a role in 

such a classification task.
● Given the variability in artifactual ICs, these results will encourage 

clinicians to automate and study BCI methods to explore neural 
responses while in a visually immersive task. 



● Entire data for this study was manually classified by a researcher 
depicting the challenge of time and training inherent in such 
investigations. 

● With the creation of DeepIC-virtual, we hope to lower the entry bar in 
terms of both knowledge and equipment while performing EEG and BCI 
explorations.



Future works 
● Verification of the examined test setups for a larger and more diverse 

cohort involving subjects with motion-related disorders and over multiple 
experiments. 

● Use supervised transfer learning and multi-class classification methods to 
explore the efficiency of accurately discriminating the sub groups of bad 
ICs. 

● Examining the role of spatial proximity and connectivity of EEG electrodes 
in the IC categorization task. 

● Investigating the addition of attention or weights to the network 
architecture. 
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