CS510 Project Report

Implementation of Pairwise
Learning to Rank in MeTA

Project Track: Software Track

Team Members:

Mihika Dave (mhdave2@illinois.edu)
Anthony Huang (kesongh2@illinois.edu)
Rachneet Kaur (rk4@illinois.edu)

Link to the code:
https://qithub.com/mihikadave/meta/tree/spd
https://qithub.com/mihikadave/meta/tree/Itr_rerank

Pull request to ‘develop’ branch in ‘meta’:
https://qithub.com/meta-toolkit/meta/pull/194

https://github.com/mihikadave/meta/tree/spd
https://github.com/meta-toolkit/meta/pull/194

1. Introduction & Impact

MeTA is a C++ data science toolkit widely used by students of UIUC, Coursera as
well as the TIMAN Research Group. But MeTA doesn’t currently support Learning To Rank.
Learning to rank is a machine learning task for ranking objects that can be employed in
numerous areas. We extended the MeTA toolkit with Learning to Rank. The idea is that
pairwise learning to rank problem can be reduced to learning a binary classifier. We
implemented 2 algorithms.

1. Stochastic Pairwise Descent (SPD) algorithm. MeTA supports SGD SVM classifier
which can be thus utilized to implement SPD.

2. We also implemented pairwise learning to rank as RankSVM, with the help of libSVM
wrapper in MeTA.

3. In the following sections, we use SPD to refer to implementation with SGD SVM and
use RankSVM to refer to implementation with libSVM.

We also implemented a new Itr_ranker in ‘ranker’ package, which can take weights
from file specified in configuration file, and use the learned weight to score documents
based on multiple features.

Ranking is the core problem in IR, and using machine learning techniques to rank is
an emerging research area. These algorithms are widely used by commercial web search
engines. It is useful for tasks in document retrieval, collaborative filtering, sentiment
analysis and many more. RankNet is known to be the central algorithm used by Bing. Other
than IR, LETOR has multiple applications in computational biology and recommender
systems. Considering the emerging impact of LETOR and MeTA, it is extremely useful to
build a LETOR algorithm for MeTA.

2. Algorithm Description

Pairwise Learning to Rank methods explore all the O(n?) pairs for training size of n
samples. Even by letting the pairwise preferences to be valid only within a given query
results in super-linear dependencies on n.

2.1 Objective

In a dataset D with labelled examples (x, y, q) where x € R" is the location of the
example in the n-dimensional space, y is the rank and g denotes the query the example
belongs to, we consider the set of tuples ((a, y,, 4.), (b, y,, d,)) wherey_,+# y,and q, = q, as
the candidate pairs.

Let P denote the set of all candidate pairs in D. The objective then is to find a weight

vector w € R"that minimizes the hinge loss over P with little computational effort.
Mathematically, the goal can be written as follows:

Minimize %||w||2 + I%I Y Hinge Loss ((a — b), sign (y, — y;), w) J (1)
(@, ¥4> 44)5 (b, ¥} q,))

where A is the reqularization parameter.

2.2 Stochastic Pairwise Descent Algorithm

SPD attempts to reduce the pairwise learning to rank problem to the learning a
binary classifier problem, via stochastic gradient descent. The binary classifier we
implemented is Support Vector Machines. The method is explained in the paper [1] by
D.Sculley. The core objective is to sample candidate pairs from P for the stochastic steps.

The algorithm iteratively samples a random pair of labelled examples from the
indexed dataset. To train the dataset, Support Vector Machine classifier is used on the

difference of feature vectors of sampled pair ((a, y,, 4.), (b, y;, 9,)) s.t. y,# y,and g, = q,.

The classification result of +1 indicates that (a, y,, g,) must be relatively ranked
higher than (b, y,, 9,) and vice versa. After learning the weights w from the classifier that
minimize the Hinge loss described in (1), the score for a test example x is computed by
<w, x> . These score values determine the ranking of the documents.

= i f (x;w)
o /
. . Positive Instances
/"l", .I: =X
=] a 4 mx, — I:
| |
X —X‘ (n] .
o ,D’ mx — X5 m 41
i o o1 Figure 1: Transformation to pairwise SVM

g X—X 3

A%

Algorithm 1: Pseudocode for the Stochastic Pairwise Descent algorithm
Step 1: Index the dataset D using a nested Hash table to D
D, 4x <« CreatelIndex (D)
Step 2: Initialize first weight
Wo=o9

index

Iterate from i =1to t (Fixed no. of iterations):

Step 3: Randomly sample a pair of labelled examples from D
((a,y,9,),(b,y,q,)) <« GetRandom Pair (D,.,)

Step 4: Compute the difference of the feature vectors for the sampled pair
X — (a-b)

Step 5: Compute the sign of the difference of ranks for the sampled pair
y <sign(y,- vy,)

Step 6: Compute the next weight using the Stochastic Gradient algorithm
w; < Stochastic Gradient Step (w1, X, y, 1)

index

end

Step 7: Return the value for final weight w,
return w;,

2.3 Sampling

We have implemented Indexed Sampling approach for the Get Random Pair (D, ,.,)
function in our code.

e Indexed Sampling:
In this approach, the dataset is indexed using nested hash tables and pairs are uniformly
sampled.
Algorithm 2: Pseudocode for the Indexed Sampling algorithm
Goal 1: To index the dataset D into a nested hash table P

Let Q denote the unique valuesin D
Step1: Forg € Q, map Y[q] to set of unique y values s.t. (x,y,q') € Dwithg=¢’
Step2:Forge Qandy € Y[qgl,mapP[qllylto(x,y,q') € Dwithg=qg'andy=

Y

Goal 2: Sample from P in O(1) time
Step 1: Uniformly sample a query q from Q
Step 2: Select ¥, uniformly at random from Y [q]

Step 3: Select y, uniformly at random from Y [q] - V.

Step 4: Select (a, y,, q,) uniformly at random from P [q][V4]

Step 5: Select (b, vy,, g,) uniformly at random from P [q][V5]
Step 6: Return the pair ((a,y,, 4,), (b, y;, 4,))

These randomly sampled pairs are then used for training the SGD SVM classifier.
The indexed sampling performs faster when the dataset fits in the memory.

2.4 RankSVM

To compare results from SPD algorithm, we implemented pairwise learning to rank
with RankSVM using the existing libSVM wrapper in MeTA, which has a different training
process from SPD.

After reading nested datamap from train data, we convert it into a pairwise dataset.
Each entry in this pairwise dataset is a pair containing a label and a feature vector. The
label can be either 1 or -1, indicating the sign of difference of labels of the two query-doc
pairs. The feature vector is the subtraction of feature vectors for these two pairs. Then we
pass the pairwise dataset for libSVM to train, after which process the libSVM will write this
SVM classifier into file. We then need to load trained weights from the classifier file into
memory for computing ranking scores later.

In testing phase, the loaded trained weights are used to compute ranking score of
each test feature_vector. Therefore, the testing and evaluation phase is similar for
RankSVM and SPD implementation. The difference between them is that the SPD is trained
on fixed number of iterations while the RankSVM is trained on all samples in training set,
indicating that the training time of SPD should be steady regardless of size of training set.
Also, since the SPD is trained in a stochastic way using gradient descent, the performance
(Precision, MAP and nDCG) of SPD may be slightly worse than that of RankSVM. We will
show comparison of SPD and RankSVM on various metrics in detail in Results Comparison
section.

2.5 Evaluation on ranking

The evaluation metrics discussed above evaluates the trained model either using
SPD or RankSVM on the validation and testing set corresponding to training set provided
by LETOR. However, we also want to test the trained learning to rank model to rank real
documents. Therefore we implement a new Itr_ranker in meta:index namespace and
registered it in the ranker_factory.

This Itr_ranker takes weights_path and briefs_path as two arguments to construct,
then loads value of trained weights from file at weights_path and loads string brief
corresponding to each weight from file at briefs_path. In the overridden score_one
function, the Itr_ranker retrieves ranking scores from okapi_bm25 ranker,
absolute_discount ranker, dirichlet_prior ranker, and jelinek_mercer ranker. Then it search
for the weights corresponding to these feature values (feature type corresponding to each
weight is specified by input briefs). Finally the score is computed as sum of each weight
multiplying corresponding feature value.

The overridden score_one function in Itr_ranker will be called by rank function in
ranker, which will then return sorted documents based on scores computed by Itr_ranker.
Since the Itr_ranker has been registered in ranker_factory, it can be used just like other

existing rankers in MeTA. Details of configuration to use Itr_ranker will be discussed in
tutorial of our implementation.

3. Implementation Details

Algorithm 3: Pseudocode for implementation
Step 0: User specifies to use SPD or RankSVM for training and testing
Step 1: Read the dataset
If use SPD
Step 2a: Index the dataset in a nested hash table
Step 3a: Using Algorithm 2 for Indexed Sampling, randomly sample a pair of tuples
with feature vector, rank label and query ID
Step 4a: With the difference of the sampled pairs as a data sample for the classifier,
train the SGD SVM classifier for 100,000 iterations
If use RankSVM
Step 2b: Build a pairwise dataset from nested datamap
Step 3b: Pass the pairwise dataset to libSVM wrapper to train
Step 4b: Load weights trained by libSVM wrapper into memory for scoring
Step 5: Validate the trained classifier
Step 6: Test on the unseen samples
Step 7: Evaluate the performance of the model based on Precision, MAP and nDCG
Step 8: Evaluate document rankings for given queries between Itr_ranker and other
existing rankers

get random pair from

nested hash-tables train 5PD

JI getRandomPair() ‘ *1 train() |[
Py
152 S5PD

o

readData()

3 validate() : Itest{) - | evaluate() -

use RankSM, build pairwise dataser train RanksyvM
5,

‘*(build_dataset nodes() = trainSVM() ook arcndidad

Figure 1: Flow of Implementation and Evaluation

Experimental Details:

Datasets used: TD2003, TD2004, NP2003, NP2004, HP2003, HP2004, OHSUMED in the
LETOR 3.0 datasets; MQ2007 and MQ2008 in the LETOR 4.0 datasets.

Training iterations: 100, 000 (fixed for all the datasets)

Optimization: Stochastic Gradient Descent

Sampling: Indexed Sampling

Evaluation: Precision @1, @3, @5, @10; nDCG @1, @3, @5, @10; MAP; Run Time in seconds
Compared with: RankSVM implemented with [ibSVM wrapper in MeTA

Evaluation on real ranking: Compare document rankings given 50 queries between
Itr_ranker and other rankers

Either the SPD or RankSVM implementation will save value of learned weights into
“letor.weights” file. To test our trained learn to rank model (weights) to rank real
documents, we specify in the configuration file to use the Itr_ranker, and we specifies
“letor.weights” as the file that the Itr_ranker will use to read value of weights from. We also
make a “letor.briefs” file, in which file each line represents the brief description of the
feature that each weight in “letor.weights” file will be multiplied upon.

We then use ./interative-search config.toml to perform 50 queries on Itr_ranker,
and store the ranking of top 5 documents for each query. The same queries are tested on
okapi_bm25 ranker, absolute_discount ranker, dirichlet_prior ranker, and jelinek_mercer
ranker, and rankings for each query with each ranker are recorded. After that we compare
the document rankings for 50 queries between Itr_ranker and each of the other four
existing rankers.

4. Organization of Contribution

We split our work into two branches.

1. The spd branch contains implementation of 2 pairwise learning to rank model. One
is called Stochastic Pairwise Descent and another is RankSVM. First uses SVM with
SGD and another uses libSVM.

2. The 1tr_rerank branch contains implementation of a Itr_ranker that takes weights
specified in ‘config.toml’ and scores documents by dot product between trained
weights and features.

We have split them and will make two pull requests for each branch, so that in each
pull request we are focusing on implementation changes in one aspect.

5. Results Comparison with Methods

We compared the Stochastic Pairwise Descent algorithm for the LETOR 3.0 and
LETOR 4.0 benchmark dataset against the original RankSVM algorithm implemented with
libSVM. The results and comparisons are discussed as follows.

Algori | NDCG | NDCG | NDCG | NDCG | Prec Prec Prec Prec MAP Train
thm @1 @3 @5 @10 @1 @3 @5 @10 Time
(s)

Rank | 0.246 | 0.296 | 0.292 | 0.295 | 0.246 | 0.271 | 0.24 0174 | 0.201 | 36.83
SVM 6666 | 2288 | 8726 | 0134 | 6666 | 8518 6666 | 8968 | 9884

SPD 0.22 0.306 | 0.295 | 0.296 | 0.22 0.270 | 0.216 | 0.152 | 0.224 | 0177
53 8528 | 3046 3704 6666 | 4122 | 03

Table 1: Results on TD2003 dataset

Algori | NDCG | NDCG | NDCG | NDCG | Prec Prec Prec Prec MAP Train
thm @1 @3 @5 @10 @1 @3 @5 @10 Time
(s)

RankS | 0.4 0.357 | 0.330 | 0.309 | 0.4 0.346 4 0.298 | 0.246 | 0.224 | 49.72

VM 8892 | 3004 | 0948 6666 | 6668 | 6666 | 2972 | 276
SPD 0.279 | 0.287 | 0.273 | 0.262 | 0.279 | 0.286 | 0.250 | 0.212 | 0.1913 | 0.210
9998 | 4816 | 4334 | 7157 9998 | 666 6668 158 498
9

Table 2: Results on TD2004 dataset

Algor | NDCG | NDCG | NDCG | NDCG | Prec Prec Prec Prec MAP | Train
ithm @1 @3 @5 @10 @1 @3 @5 @10 Time

(s)

Rank | 0.557 | 0.722 | 0.771 | 0.795 H 0.557 | 0.254 | 0.174 | 0.093 | 0.678 | 9.956
SVM 0116 1504 | 8352 | 7908 | 0116 3552 | 0842 H 8058 | 4266 | 52
8

SPD

Algor
ithm

Rank
SVM

SPD

Algorith
m

RankSVM

SPD

Algorith
m

RankSVM

0.533
589

NDCG
@1

0.575

238

0.521
9046

NDC
@1
0.67
7982

0.72
0153

NDC
@1
0.58

952
38

0.756 | 0.789 | 0.810 | 0.533 | 0.265 | 0.174

404

6262

5264

589

2194

0384

Table 3: Results on NP2003 dataset

NDCG
@3

0.778

9668

0.792
232

NDCG
@5

0.808

6056

0.829
3892

NDCG
@10

0.831

2058

0.841
1878

Prec
@1

0.575

238

0.521
9046

Prec
@3

0.273

968

0.283
1748

Prec
@5

0.178

2856

0.186
2858

Table 4: Results on NP2004 dataset

NDCG
@3

0.783
445

0.786
548

NDC
G@5

0.78
8029
2

0.81
0589
4

NDCG
@10

0.809
4076

0.824
2756

Prec
@1

0.67
7982
2

0.72
0153
2

Prec
@3

0.312
6862

0.310
0468

Prec
@5

0.194
3242

0.20
0935

Table 5: Results on HP2003 dataset

NDCG
@3

0.745
7278

NDC
G@5

0.76
9351
4

NDCG
@10

0.7951
498

Prec
@1

0.58
9523
8

Prec
@3

0.278
7302

Prec
@5

0.180
9524

0.093 | 0.675 | 0.164
9310 1454 | 88
4
Prec MAP Train
@10 Time
(s)
0.097 | 0.700 | 7.233
1429 7574 768
0.097 | 0.686 | 0.182
2381 2656 | 406
6
Prec MAP Train
@10 Time
(s)
0.104 | 0.736 | 11.565
5875 4058 | 42
8
0.106 | 0.754 | 0.167
6616 8992 | 6
Prec MAP Train
@10 Time
(s)
0.100 | 0.696 | 9.562
19054 | 6816 482

SPD 0.60 H 0.7116 | 0.76 | 0.784 | 0.60 | 0.265 | 0.183 | 0.098 | 0.684 | 0.187
380 | 806 4688 8518 380 0794 A 8098 | 76194 | 9238 | 434
926 4 926

Table 6: Results on HP2004 dataset

Algorithm | NDC | NDC | NDC | NDCG | Prec Prec Prec Pre | MAP | Train
Gel Ge@3 | Ge5 | @10 @1 @3 @5 c Time
@10 (s)

RankSVM | 0.5 | 049 | 045 H 0437 | 0.667 | 0.612 | 0541 | 04 | 043 | 5519
406 | 4239 | 7924 | 9256 | 7492 | 7998 | 6796 840 | 656 7056

496 8 8 04

SPD 051 046 | 044 | 0442 | 0.620 | 056 | 0540 05 5 044 0.162
138 | 7027 | 8665 | 5568 | 9092 H 0678 | 6492 | 041 8827 | 1212
54 8 8 4 558 | 4

Table 7: Results on OHSUMED dataset

Algorithm | NDC | NDC | NDC | NDCG | Prec Prec | Prec Pre | MAP | Train
Gel Ge@3 | Ge5 | @10 @1 @3 @5 c Time
@10 (s)

RankSVM | 0.47 1 046 | 0.47 | 0.5102 0.545 | 049 | 0473 |04 | 053 | 36.2
036 | 7041 | 3038 | 584 5812 | 8738 | 4686 445 | 6280 | 0937

24 6 6 8 588 | 4 2

SPD 04 044 045 | 0485 | 0510 | 047 | 0450 K 041 0.513 0177
360 | 5161 | 4808 | 355 353 3675 | 0434 330 | 754 366
204 4 8 8

Table 8: Results on MQ2007 dataset

Algorithm | NDC | NDC | NDC | NDCG | Prec Prec Prec Pre | MAP | Train
G@1 G@e3 H Ge@5 | @10 @1 @3 @5 c Time
@10 (s)

RankSVM |1 04 | 048 | 0.53 | 0.6109 | 0.576 | 0.531 | 0.490 | 0.41 | 0.59 | 9.06

606 | 9747 | 0109 | 202 2972 | 7204 | 7624 841 | 2420 | 2924

452 8 4 2 4

SPD 0.41 0.47 |0.514 0589 | 0541 | 0.50 | 0.480 | 0.4 | 0.57 | 0.162
656 | 0119 | 2168 | 6466 7664 | 8908 | 1892 | 067 | 0077 | 396
46 |2 6 104 | 8

Table 9: Results on MQ2008 dataset

MAP comparision on datasets

.2 S |
i b Sl

TD20:03 M P210:03 HP 2003 OHSLUIMED

B | m

[

2 FN e s A s R o =]
W

Mean Average Precision
98]

o o

m R an kSWT m Rank Boost F Rank m SPD

Figure 2: Comparison of results

It can be noted that the results show the ranking performance of the SPD algorithm
is at least as good as the benchmark methodologies tried namely, Rank SVM, Rank Boost
and F Rank on the LETOR 3.0 datasets.

We also perform evaluation of our trained learning to rank model on real queries. In
this evaluation we simply make 50 queries to Itr_ranker, and record document rankings for
each query. Then we make the same 50 queries using okapi_bm25, absolute_discout,
dirichlet_prior, and jelinek_mercer ranker respectively. Then for each existing ranker, we
take its document rankings as the true ranking, and calculate MAP and nDCG at position 5
of the document rankings from Itr_ranker. In this way, we can see the ranking difference
between Itr_ranker and other existing rankers.

Base Ranker | okapi_bm25 | absolute_discount | dirichlet_prior | jelinek_mercer
MAP 0.9432 0.931933333 0.916466667 0.9744

NDCG@5 0.99388675 | 0.981475069005 0.979288626 0.99819562

Table 10: Document rankings of 50 queries

6. Implementation Challenges

In this section we discuss the few challenges we encountered while implementing

the algorithms:

1.

The biggest challenge was integration with MeTA toolkit. We had earlier
implemented our algorithms in a procedural manner which would train and test for a
particular dataset. In order to integrate it with the project structure of MeTA, we
had to change it into Object Oriented approach. This could make the ranker
re-usable for future users who can now use pre-trained models and also create their
own rankers and test it on a wide range of datasets.

In Stochastic Pairwise Descent, we kept the number of iterations fixed at 100,000
which was suggested in the paper [1]. This SGD SVM iteration count was good for
the tested datasets but we have no formal reasoning for the same. It may not be
optimal for other datasets. We need to fully validate the samples to tune the
iteration number parameter.

The benchmark datasets sometimes had only 1 document for a given query, which
led to arbid results earlier. We fixed the code to later handle such cases.

We needed to decide a suitable method for indexing the dataset. We decided to read
the whole training dataset and process it. Sampling values uniformly was tricky.

7. Using the software

Setting up the directory

Follow the steps given below will install “MeTA” toolkit along with our implementation of
Pairwise Learning to Rank:

1. Clone the repository

git clone https://github.com/mihikadave/meta.git

2. Change directory to meta

cd meta

3. Switch to branch Itr_rerank

git checkout 1ltr_rerank

4. Pull for branch ‘spd’
git pull

4. The next few steps for the set-up instructions depend on the OS you are using.

Follow the instructions in the README.md to set up meta and build it, depending on your
operating system:
https://github.com/mihikadave/meta/blob/master/README.md#project-setup

Running Learning to Rank

Pairwise letor main.cpp:

We provide pairwise_letor_main.cpp to demonstrate how users can integrate the
pairwise learning to rank algorithm that we have implemented (pairwise_letor.h and
pairwise_letor.cpp) in their own functions.

Pairwise_letor_main.cpp takes 2 command line arguments:
a. to provide path to the training, validation and testing dataset to be used for training
the pairwise ranker
b. Number of features in each sample
After building meta, you can run the learning to rank algorithm as follows:
5. Change to build directory and build
cd build

make

6. To run letor, you need to provide the path to the dataset and the number of
features in each sample

https://github.com/mihikadave/meta/blob/master/README.md#project-setup

Usage:

./pairwise_letor main [directory path] [num_features]

7. Running the above command will take two inputs from the user:

First, choose whether you want to use a pre-trained model:

Enter 1 for pre-trained model, and 0O for training a new model. If you chose 1, enter the path to
the existing model.

8. Second, choose the ranking method:

Enter 1 for training with SPD and O for training with RankSVM. Entering O will prompt to
enter the path to libSVM.

The program will now save the LETOR model and print out the MAP, NDCG values for the
test data

Manual Tests

Example datasets from LETOR3.0 can be found in the data folder in meta directory.

Example 1:

Every data sample in MQ2007 dataset (part of Letor3.0 dataset) has 46 features.
To use the MQ2007 dataset, run the following command from build folder

1. Run the main file
./pairwise_letor_main PATH-TO-META/meta/data/MQ2007/Fold3/ 46

2.For a new model, enter O.
3. For RankSVM, enter O.
4. Enter the path to libSVM

PATH-TO-META/meta/deps/libsvm-modules

Example 2:

Every data sample in MQ2007 dataset (part of Letor3.0 dataset) has 46 features.
To use the MQ2007 dataset, run the following command from build folder

1. Run the main file

./pairwise_letor_main PATH-TO-META/meta/data/MQ2007/Fold3/ 46

2. For a pre-trained model, enter 1.
3. Enter the path to the model

letor_svm_train.model

4. For RankSVM, enter 0.

Example 3:

Every data sample in OHSUMED dataset (part of Letor3.0 dataset) has 45 features.
To use the OHSUMED dataset, run the following command from build folder

1. Run the main file
./pairwise_letor_main PATH-TO-META/meta/data/OHSUMED/QuerylLevelNorm/Fold4/ 45

2. For a new model, enter O
3. For SPD, enter 1.

Example 4:

Every data sample in OHSUMED dataset (part of Letor3.0 dataset) has 45 features.
To use the OHSUMED dataset, run the following command from build folder

1. Run the main file
./pairwise_letor_main PATH-TO-META/meta/data/OHSUMED/QuerylLevelNorm/Fold4/ 45

2. For a pre-trained model, enter 1.
3. Enter the path to the model

letor_sgd_train.model

4. For SPD, enter 1.
5. Enter 1to continue training this model, else 0.

Documentation of the code:

Doxygen documentation for the code (if required for review) can be found at the end of the
report.

Sample Tutorial:

We have implemented a sample file for implementing the class pairwise_letor.
The sample file is pairwise_letor_main.cpp. As we saw earlier, it requires the path of
training dataset and number of features in the data.

Sample usage of the run Command:

./pairwise_letor_main PATH-TO-META/meta/data/OHSUMED/QueryLevelNorm/Fold4/ 45

Given below we show some snippets from pairwise_letor_main.cpp to demonstrate some
use cases of our implementations:

l. Pre-trained model

A pre trained model can be used rather than training a new model.

cout << "Do you want to load trained model from file? 1(yes)/@(no)" << endl;
cin >> hasModel;
if (hasModel) {

cout << "Please specify path to your model file" << endl;

cin >> model file;

cout << "Path to your model file is: " << model file << endl;

If ‘’: User is prompted to enter the path for the file containing the trained model
Else: A new model is trained.

Il. Options of using different rankers
RankSVM (libSVM) or SPD (SVM with SGD)

cout << "Please select classification method to use: @(libsvm), 1(spd)" << endl;
cin >> selected_method;
if (selected_method == 0) {
train_libsvm(data_dir, num_features, hasModel, model file);
} else {
train_spd(data_dir, num_features, hasModel, model file);

Ill. Handling pre-trained models

As shown in |, for pre-trained models, the path to the model_file is obtained from the user,
else model_file is null. The training step is skipped in this case.

IV. New letor model with SPD

pairwise letor letor_model(num_features, pairwise_letor::SPD, hasModel, model file);

letor_model.train(data_dir);

SPD is trained on 100,000 iterations using the Hinge Loss function.

V. New letor model with libSVM:

User is prompted to provide path of ibSVM modules and the model is trained.

pairwise letor letor_model(num_features, pairwise_letor::LIBSVM, hasModel, model_file);

letor_model.train_svm(data_dir, svm_path);

VI. Validating the model:

letor_model.validate(data_dir);

VIl. Testing the model:

The trained and validated model is tested. The test documents are ranked and evaluated
on Precision, MAP and nDCG.

letor_model.test(data_dir);

In order to use Itr_ranker to rank, you need to checkout branch Itr_rerank. Then in the
config.toml under build/, at the [ranker] part, write:

Method = “Itr_ranker”

Weights = “letor.weights”

Briefs = “letor.briefs”

Then use ./interactive-search config.toml

The letor.weights is automatically saved after each time you run./letor_main.

The letor.briefs containing briefs for each weight (what this feature stands for). For
example, “tf_doc”, “bm25_doc”.

7. Contribution of Team Members

We have contributed to the project in reqular intervals and organized multiple
group meetings to collaborate on various project requirements.

Mihika: worked on the random sampling method and train method for spd, made
the code object oriented, integrated with the meta project structure, fixed style issues,
added comments and created doxygen documentation, worked on the software
documentation, etc.

Anthony: implemented ranksvm, tested on LETOR datasets, implemented indexing
methods, compared method performance, various parts of software description in the
report, add Itr_ranker in meta:index namespace to use trained learning to rank model in
real document ranking

Rachneet: Contributed towards the implementation for SPD, worked on the
technical background for the implementation, documentation, generated graphs,
contributed to tutorial

8. References

[1] Sculley, D. "Large scale learning to rank." NIPS Workshop on Advances in Ranking, 2009.

[2] Liu, Tie-Yan, et al. "Letor: Benchmark dataset for research on learning to rank for
information retrieval." Proceedings of SIGIR 2007 workshop on learning to rank for
information retrieval. Vol. 310. 2007.

