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Introduction

* Era of Big Data

e Data distributed over multiple locations
— Distributed databases
— Images and videos over networks
— Sensors

* Centralized algorithms need to be scaled to
distributed settings

Q _ , . :
|DE Industrial and Enterprise S}’STBmS Engineering UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN ﬂ




Motivation

e k-Means and k-Medians are center based
clustering algorithms

e Need a method to run k-means and k-
medians on distributed data

« Communication cost should be low
* Run clustering algorithms on coreset
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What is a coreset/ e-coreset?

* An e-coreset is a weighted set of points whose
cost on any set of centers is approximately the
cost of the original data on those same
centers up to accuracy €.
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e-coreset P’ with centers X
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What is a coreset/ e-coreset?

* An e-coreset is a weighted set of points whose
cost on any set of centers is approximately the
cost of the original data on those same
centers up to accuracy €.

* Thus an approximate solution for the coreset
is also an approximate solution for the original
data.
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How are coresets constructed?
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Original data P
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3) Sample points with
probability proportional to
their contributions to the
cost.
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Methodology

e The dataset is distributed on several nodes in an
undirected connected graph.
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Methodology

* A local constant approximation solution is
computed
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Methodology

* The total cost of local solution communicated to
the other nodes in the graph using a message
passing algorithm.
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Methodology

 Based on the cost of nodes and the contribution
of the data towards their local solution, the local
data are sampled to form local coresets
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* The message passing algorithm is called once
again to combine the local coresets.
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* |f each node constructs an e-coreset on its
local data, then the union of these local
coresets is an e-coreset for the entire data.

Q . . — -
|DE Industrial and EﬂTEﬂ]”SE S}’STBmS EHEWEEHHE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN ﬂ




* The constant approximation algorithm is
applied to this global coreset to obtain the
final result.
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Comparison to Other Coreset
Algorithms:

 Zhang et. al.[1] is limited to rooted trees.
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Comparison to Other Coreset
Algorithms:

 Zhang et. al.[1] is limited to rooted trees.
— The communication cost to develop coresets is very
high.

— Although it is possible to find a spanning tree, when
the graph has large diameter every tree has large
height which greatly increases the size of coresets
which must be communicated across the lower levels
of the tree.

 D. Feldman et. al.[2] ignores the communication
cost and merges coresets in a parallel
computation model.
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Technical Background
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Preliminaries

* Consider two points p g € R%; d(p, q) is the Euclidean
distance between p and g

* k-means goal: Find set of k centers X = {x4, x5, ..., X} which
minimize the k-means cost of data P € R¢

* k-means cost = Cost(P,X) = Y epd(p, X)*
where d(p, X) = mel)r(l d(p, X)
X

* If Pisaweighted dataset with a weight function w, then k-
means cost = Cost(P,X) = Y,cp w(p)d(p, X)?
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* For distributed clustering, we consider
Setof nnodes V = {v;,1 < i < n} which communicate on
undirected connected graph ¢ = (V, E), with m = |E|edges.

* Each node v; contains local set of data points P; and the
global dataset is P = Uj~,

* (v;,v;) € E indicates that v; and v; can communicate with
each other.

 Communication cost = number of points transmitted. For
simplicity, assume that there is no latency in communication.
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Distributed coreset construction

Input: Data (distributed across different nodes)
Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Compute number of points to be
sampled

Set weights on local data

* P;:Set of points in node i

 Round 1 is performed on each node
followed by Round 2.

* Only cost values are communicated.

Random Sampling of points to
coreset

Inclusion of local centers to coreset

fill il

uEi
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Round 1

Step 1: Computing centers for local data

* Perform k-center clustering on node
data (Lloyd’s Algorithm)
* Output: Set of centers B; for P,

Industrial and Enterprise Systems Engineering

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset
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Round 1

Step 2: Computing constant approximation

Cost(P;, B;) = {

g
Z d(p,B;) for k —medians
DEP;

Z d(p, B;)? for k — means

\ PEP;

where d(p, B;) = min d(p,b)

Industrial and Enterprise Systems Engineering

Compute centers for local data

Compute constant approximation
Communicate costs to nodes

Compute number of points to be
sampled

Set weights on local data
Random Sampling of points to
coreset
l Inclusion of local centers to coreset I
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Round 1

Step 3: Communicating cost to nodes

* Cost(P;, B;) is communicated to each node.
* Message _Passing() used for cost communication

Industrial and Enterprise Systems Engineering

Compute centers for local data
Compute constant approximation
Communicate costs to nodes

Compute number of points to be
sampled
Set weights on local data
Random Sampling of points to
coreset
l Inclusion of local centers to coreset I
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Round 2

Step 1: Computing # of points to be sampled

Compute centers for local data
\\ Compute constant approximation
Communicate costs to nodes

Compute number of points to be
sampled
Set weights on local data
* t=Global coreset size
* Number of points to be sampled on node . .
t cost(PyB;) Random Sampling of points to

i, 6 = — coreset

at Z;'l=1 cost(P;,B)
* Proportional to total cost contribution

Inclusion of local centers to coreset
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Round 2

Step 2: Setting of weights on local data

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Compute number of points to be
sampled

Set weights on local data

* Weight of data point p, m, = 2cost(p,B;))Vp € P;

* Proportional to distance of point from corresponding Random Sampling of points to
local center coreset

Inclusion of local centers to coreset

A

uEi
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Round 2

Step 3: Random sampling of points to coreset

Y Compute centers for local data
® o
[ . .
Compute constant approximation
()
o
Communicate costs to nodes
PY (]
o ° ®

Compute number of points to be
sampled

Set weights on local data
* Non-uniform random sample S; of t; points from P,,

A

where for every q € Pi, we have Random Sampling of points to
Prq = p] = my coreset
ZzEPi my
. YiXzep, M ] i
- Weight on q, W, = i : tl z eachq € Si Inclusion of local centers to coreset
q

uEi

Q . . N
Industrial and EﬂTEﬂ]”SE S}’STBmS EHEWEEHHE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



Round 2

Step 4: Including local centers to coreset

* Local k-centers (B;) are included to the coreset
*  Weighton b, w;, = |Py| — Xke p,ns Wk, Where

P, = {p€P:d(pb) = d(p B}

Industrial and Enterprise Systems Engineering

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset
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Distributed coreset construction

Input: Data (distributed across different nodes)

Compute centers for local data

Compute constant approximation

D/\ Communicate costs to nodes

Output: Weighted Coreset Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

fill il

[ ]
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Objective:
e Reduce the total communication cost

* |Preserve the theoretical guarantees for approximate clustering cost

Theorem 1:

There exists an algorithm that with probability at least 1 — §, the output is
an e-coreset for the global dataset. The communication cost is O(mn) and
the number of points in the coresets (coreset size) are:

 k-means: O <El4 (kd + log (%)) +nk log (n?k)>

: 1 1
* k-medians: O (6—2 (kd + log (E)) + nk)

Q . . . -
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Key Parameters

* Sampling Probability: Probability with which data points are chosen to be
candidates for coresets
Mp
ZZEP My

* Weights on coreset points: The weights on coreset points are:

Prlq =p] =

_ ZiZzEPi my

mg |S|

Wy forq € S and wy = |Py| — Xkep,ns Wk for b € B

* Function applied on the points: A suitably defined function f(p) is
selected. The function nature varies for k-means and k-medians.
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Validity of Sampling probability and
Weights

Claim: For a given function f(p), the sampled coreset points are valid
approximations of the original data

To Prove: E[qus qu(q)] =Y. pep f (p) for chosen probabilities Pr[q = p]
and weights w,,

Proof:

E

> qu(q)] = > Elwgf@] =) > Prig = plwpf @)

qES qES qES pEP

m Zz Z
:ZqES ZpEPZ g oo f(p)

ZEP mZ mp|S|

= Sqes Tperg f(0) = Zper ()
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Validity of f(p)

Lemma 1:

f (p))

mp

VfEF:| Xper f(D) - LgesWaf (@] < € (Upep mp)(Maxpep

* Setmy, = maxsepf(p). Bounds RHS to € (Zpep mp)

* Natural Approach: Set f,.(p) = cost(p, x)
*  Complication: Suitable upper bound not available for cost(p, x)

*  Alternative Approach: Set f,.(p) := cost(p,x) — cost(bp,x) + cost(p, bp)

0 X
V 0 < fy(p) < 2cost(p,by,)
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Proof of Theorem 1 for k-medians

Outline: Given that the sampling probabilities, weights on points and f(p) as defined previously,
algorithm outputs an e-coreset.

*  Set fr(p) = d(p,x) — d(by,x) + d(p,b,). Then, m,, = 2d(p, b)) and the conditions
stated in Lemma 1 are satisfied.

* Then,

D= ‘Zpepfx(m Do wqfx<q>‘ <0©) dp

pPEP

»  Substituting the definition of f,. (o) in the expression for D,

zpep[d(p, x) — d(by, x) + m,| - Z qu[d(p, x) — d(by, x) + my]

*  On further simplification

D dpn-) wed(gx)
pEeEP qeESUB

which is guarantee that the output of algorithm 1 is an e-coreset

D =

qe

D = < 0(e) d(p,x)

pEP
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DE Industrial and EﬂTEﬂ]”SE S}rg‘[gmg EHEWEEHHE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I



Proof of Theorem 1 for k-means

 Complication:

Difference term |cost(p, x) — Cost(bp,x)| = |d(p, x)? — d(bp,x)2| is not bounded.

Conditions of Lemma 1 are not met.

*  Fix: Two categories of points:

0 Good points (costs approximately satisfy the triangle inequality)
O Bad points

GOOD POINTS:

— Define the good points with centers x as

— G(x) = {p €P:|cost(p,x) — cost(bp,x)| < Ay}
cost(bp,x)

€
— These difference between the costs can be bound as before.

where Ap=

Q . . . :
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BAD PONTS:

cost(bp,x)

For bad points, it is proven that the difference in cost may be larger than but

will be O(e min{cost(p, x), cost(by, x)}).

* Hence [, (p) is defined only over good points as follows:

f.(p) = {cost(p, x) — cost(b,,x) + A, if p € G(x)
0 otherwise

* Then, D = |Zpep cost(p,x) — Xgesup Wqcost(q, x)| can be decomposed into three terms

ZpEP fx(P) — qus W fx(q) (1)
+ ZPEP\G(x)[cost(p, x) — cost(bp,x) + Ayl (2)
— ZpEP\G(x) wy[cost(q,x) — cost(bq,x) + A4] (3)

Q . : N ’
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Proof of Theorem 1 for k-means (cont.)

It can be showed that each of these terms is bounded by
O(e)cost(P,x)

Sum of three terms is also bounded by O(€)cost(P, x)

Then,

D = Z cost(p,x) — z wqcost(q,x)| < 0(€e)cost(P,x)
PEP qESUB

Hence, by choosing an appropriate €, the result is established.
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Pseudo code

Git Link: https://github.com/harshadrai/Distributed kMeans
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Distributed coreset construction

Input: Data (distributed across different nodes)

Compute centers for local data
Compute constant approximation
Q/\ Communicate costs to nodes

Round 2

Output: Weighted Coreset Compute number of points to be sampled

® | °®
Set weights on local data
Random Sampling of points to coreset

Inclusion of local centers to coreset
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Message Passing

[ INPUT: Message, Neighbors ]
Input:

Message to communicate
Neighbors to whom we wish to communicate
the message

Message Passing(I;, N;)

Define R;={l;} as information recieved

1 Node i _
Send [; to all neighbors N;
2 - J
While R; # {lj:1 < j <n) :
3
IfI; € R;
I; - Message at node i TS
N; - Neighbors of node i r D
Ri= Ri U {I]}
- Ni - Node 2
— Send [; to all neighbors N;

Q . . — -
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[ INPUT: Message, Neighbors ]

Step 1:
Define R; = {I;} as the information received

Message Passing(I;, N;)

Define R;={l;} as information recieved

Node i with message [;

1
[ Send [; to all neighbors N; J
2
While R; # {I;: 1<] < n} }
3
IfI; € R;

I; - Message at node i TS

N; - Neighbors of node i r D
Ri= Ri U {I]}
s Ni - Node 2 .

= {I;} —& Send [; to all neighbors N; )
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[ INPUT: Message, Neighbors ]

Step 2:
Send [; to all its’ neighbors N;

Message Passing(I;, N;)

Define R;={I;} as information recieved

. /1/ Node i with message I;
Send [; to all neighbors N;

2 Message [; received

While R; # {[:1<j < n} }
3 [
IfI; € R;
YES
Ri= Ri U {I]}
— Send [; to all neighbors N;

O ) . o .
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[ INPUT: Message, Neighbors ]

Step 3:
Check if information received R; is same as
information present at all the nodes

Message Passing(I;, N;)

Define R;={I;} as information recieved
Send [; to all neighbors N;
NO: Continue to step 4 \ <

= WhileR; #{[;:1<j <n}

[
- If I; € R;

YES
Ri= Ri U {I]}
— Send [; to all neighbors N;

Q . . — -
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[ INPUT: Message, Neighbors ]

Step 4:
Check if information [; € R;

Message Passing(I;, N;)

YES: Extend set of information received by I;

R;=R; U{l;} Define R;={l;} as information recieved
_
Send [; to all neighbors N;

NO: Continue to step 3 )
While R; #{[;:1 < j < nj}
[ |

If Ij & R;
v YES

NO

Ri= Ri U {I]}

—[ Send [; to all neighbors N; J

Q . . — -
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Step 5:
Send [; to all its’ neighbors N;

Industrial and Enterprise Systems Engineering

[ INPUT: Message, Neighbors ]

Message Passing(I;, N;)

Define R;={l;} as information recieved
_
Send [; to all neighbors N;

While R; #{[;:1 < j < nj}
L

IfI; € R;
YES
[ Ri= Ri U {I]} }
— Send [; to all neighbors N;

UMIVMERSITY OF ILLINCIS AT URBANA-CHAMPAIGN H



Output:

Communication done among all the nodes

* As aresult, information is shared globally.

 Communication cost at each step = Size of the message

Q . : N -
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Distributed clustering on graph

Data (distributed among nodes)
A, - a approximation clustering algorithm (Lloyd’s Algorithm) l For each node i l

R

* P;:Set of points in node i
* N;: Neighbors at node i [

Get ¢ local coreset D;using Distributed
Coreset construction algorithm

For each node i

Call Message_Parsing ( D;, N;)

X=Aa, (U D]) ]

Q . . — -
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Step 1:

Apply Distributed Coreset construction For each node i
algorithm on data

Get ¢ local coreset D;using Distributed
Coreset construction algorithm
Output: e

Local weighted coresets D; on each node i

For each node i
Weighted Coresets
Call Message_Parsing ( D;, N;)

|  nom )
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Round 2

Step 1:

Distributed coresets are communicated to each ,
node For each node i

Using Message Passing algorithm —
Get ¢ local coreset D;using Distributed
Coreset construction algorithm

For each node i

Call Message_Parsing ( D;, N;)

[ X=Aa, (U D])

H

Q . . . :
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Round 2

Step 2:
Lloyd’s clustering algorithm is applied to
compute the centers for the global dataset

Output:

Centers of the Global dataset

Industrial and Enterprise Systems Engineering

l For each node i l

Get ¢ local coreset D;using Distributed
Coreset construction algorithm

For each node i

Call Message_Parsing ( D;, N;)

X =Aa (U Dj)
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Random Graph

Each edge is generated independently with probability p.

For experiments, we used p = 0.3 and 10 nodes.

Preferential Graph

Preferential graphs are generated using the preferential attachment process.

Additional edges are added continuously to the graph that are distributed
among the nodes as an increasing function of the number of edges the
nodes already have.
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Uniform Partitioning

Each data point from global dataset is assigned to a local site with equal
probability.

Uniform Partitioning

For each node i

|Global Set|

Randomly Sample i Nodos

points

Assign sample to node i

1

P(assigning a global data point to a node i) = No.of nodes

Q . . — -
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Weighted Partitioning

Each data point from global dataset is assigned to a local site with probability proportional to
the nodes’ weight.

Weighted Partitioning

For each node i

Assign a weight w; chosen by |N(0,1) |

Randomly Sample w;|Global Set| points

Assign sample to node i

P(assigning a global data point to a local site i) = w;

Q . . — -
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Degree Partitioning

Each data point from global dataset is assigned to a local site with probability
proportional to the nodes’ degree.

Degree Partitioning

For each node i

Degree (Node i)
Y. jenodes Degree(Node j)

di=

Compute the normalized degree d;

Randomly Sample d;|Global Set| points

Assign sample to node i

P(assigning a global data point to a local site i) = d;

Q . . — -
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Inferences

eFor all the datasets k-means cost ratio was plotted against communication cost.

ek-means cost ratio is defined as the ratio obtained by running Lloyd’s algorithm on
the coreset and the global data respectively to get two solutions, and computing the
ratio between the costs of the two solutions over the global data.

eFor all the datasets the k-means cost ratio reduced when communication cost
increases. This implies that when larger coresets are generated the solution of the
proposed algorithm converges to the k-means solution.

eSame results were obtained on Random and Preferential graph with three types of
partitioning namely, uniform partitioning, weighted partitioning and degree

partitioning.

eResults were also consistent on different dataset.
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Datasets Used

Following 4 datasets were used
1) Corel Image Features: This dataset contains image features extracted from a Corel
There are total 68040 observations.

2) Spambase Data Set: There are total 4601 observations with 58 dimensions. There were
1813 marked as spam and 2788 marked as non-spam.

3) Letter Recognition Dataset: The dataset was made to identify each of a large number
of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. There are total of 20000 observations each observation has 16 attributes.

4) SFpark dataset: The dataset contains data from three hundred parking lots in San
Francisco city fitted with Smart Meters. In the processed data the rows represents Parking
lots and columns represents time. There were total 300 rows (one for each parking lot)
and 2880 columns (24 hours x 15 time slots x 30 days).
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K Means cost
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22.09 22.99 24.18 25.65 27.42 29.47 3181
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Weighted Partitioning
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K Means cost
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K Means cost
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TRAFFIC DATASET

Traffic dataset, Random graph with weight Partitioning

114

Traffic dataset, Random graph with uniform Partitioning
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K Means cost

145 368 663 10.5 15.14 205 0.90 . . . .
Communication Cost {(*1076) 143 363 664 10.45 15.03 20.4

Communication Cost (*1076)

Random Graph Random Graph
Weighted Partitioning Uniform Partitioning

K Means cost
(=]
(=]
B

102}

101

100 . . . L . .
2009 2065 2148 2256 2391 2552 738 2853

Communication Cost {(*10°6)

Preferential Graph
Uniform Partitioning

Industrial and EﬂTEﬂ]fiSE S‘!’STBITIS Enginggfing UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Summary

* Datasets are getting larger in size, so they are being stored on distributed
systems. Increasing the efficiency of the algorithm which work on such
distributed systems has gained importance.

e Based on the algorithm proposed in the paper a python code was written to
perform distributed k-means clustering.

» 4 different datasets from two different sources was used to evaluate the
performance of the algorithm.

* The k-means cost ratio reduces with increase in communication cost.

* We were able to replicate results given in the paper.

* Applications and connections to course
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THE END

Q . . . -
Industrial and Enterprise Systems Engineering UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN [l



Color Histogram: 32 dimensions (8 x4 =H x S)

- HSV color space is divided into 32 subspaces (32 colors : 8 ranges of H and 4 ranges of S).

- the value in each dimension in a ColorHistogram of an image is the density of each color in the entire image.

- Histogram intersection (overlap area between ColorHistograms of two images) can be used to measure the similarity between two images.

Color Histogram Layout: 32 dimensions (4 x 2 x4 = H x S x sub-images)

- each image is divided into 4 sub-images (one horizontal split and one vertical split).
- 4x2 Color Histogram for each sub-image is computed.

- Histogram Intersection can be used to measure the similarity between two images.
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The objective is to identify each of a large number of black-and-white rectangular pixel displays as one of the 26
capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within
these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of
integer values from 0 through 15. We typically train on the first 16000 items and then use the resulting model to
predict the letter category for the remaining 4000. See the article cited above for more details.

Attribute Information:

. lettr capital letter (26 values from A to Z)
. X-box horizontal position of box (integer)
. y-box vertical position of box (integer)
. width width of box (integer)
. high height of box (integer)
. onpix total # on pixels (integer)
. %x-bar mean x of on pixels in box (integer)
. y-bar mean y of on pixels in box (integer)
. X2bar mean x variance (integer)
10. y2bar mean y variance (integer)
11. xybar mean x y correlation (integer)
12. x2ybr mean of x * x * y (integer)
13. xy2br mean of x * y * y (integer)
14. x-ege mean edge count left to right (integer)
15. xegvy correlation of x-ege with y (integer)
16. y-ege mean edge count bottom to top (integer)
17. yegvx correlation of y-ege with x (integer)

OO~ WN —
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EXTRA

Attribute Information:

The last column of ‘spambase.data’ denotes whether the e-mail was considered spam (1) or nat (0), i.e. unsolicited commercial e-mail. Most of the atributes indicate whether a particular word or character was frequently
occuring in the e-mail. The run-length atributes (39-57) measure the length of sequences of consecutive capitalleters. For the statistical measures of each atfribute, see the end of this fle. Here are the definitions of the
attrbutes:

48 continuous real 0,100) attributes of type word freq WORD
= percentage of words in the e-mail that match WORD, i. 100 * (number of times the WORD appears in the e-mail) /total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by
non-alphanumeric characters or end-of-string,

6 continuous real 0,100] attibutes of type char_freq_CHAR|
= percentage of characters in the e-mail that match CHAR 1.2 100" (number of CHAR occurences) /total characters in e-mail

{ continuous real [1,.] atrbute of type capital run length average
= average length of uninterrupted sequences of capital letters

1 continuous integer [1..] atrioute oftype capital run length longest
= length of longest uninterrupted sequence of capitalletiers

1 continuous integer [1,..] atrioute oftype capial run_length total
= sum of length of uninterrupted sequences of capital lefters
= {otal number of capitalletters in the e-mail

1 nominal {0, 1} class aribute of type spam
= denotes whether the e-mail was considred spam (1) or not (0), .. unsolictted commercial e-mail,



SF Parking Data

Raw data
.lNET_PAID_AMT SESSION_START_DT SESSION_END_DT PAYMENT TYPE DATE PM_DISTRICT_NAME POST ID STREET BLOCK
0 0.5  02-04-2013 10:37 02-04-2013 10:52 CASH 02-Apr-13 Mission 568-23070 MISSION ST 2300
1 0.1  02-04-2013 10:41 02-04-2013 11:08 CASH 02-Apr-13 Fisherman's Wharf ~ 472-28070 HYDE ST 2800
2 0.2 03-04-201312:30 03-04-2013 13:00 CASH 03-Apr-13 Mission 217-33210 17TH ST 3300
3 0.25  03-04-2013 11:56 03-04-2013 12:56 CASH 03-Apr-13 Fillmore 440-17080 GEARY BLVD 1700
4 0.9  02-04-2013 15:08 02-04-2013 16:00 CASH 02-Apr-13 Mission 370-01280 CAPP ST 100

Processed data

month  date time MISSION ST 2300 HYDE ST 2800 17TH ST 3300 |GEARY BLVD 1700 [CAPP ST 100 BRANNAN ST 400 VAN NESSAVE700 HAYES®

3029 10 17 1315 1

3030 10 17 1330 1 1

3031 10 17 1345 1 1

3032 10 17 1400 1 1

3033 10 17 1415 1 1

3034 10 17 1430 1 1 1

3035 10 17 1445 1 i 2

3036 10 17 1500 1 1 2

3037 10 17 1515 1 1 2

3038 10 17 1530 1 1 2

3039 10 17 1545 1 1 2

3040 10 17 1600 1 1 2

3041 10 17 1615 1 1 2

3042 10 17 1630 1 1 2

3043 10 17 1645 1 1 2

3044 10 17 1700 1 1 2

3045 10 17 1715 1 1 2

3046 10 17 1730 1 1 2

3047 10 17 1745 1 1 2

3048 10 17 1800 1 1 2 .
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Many stream-oriented applications do not need exact
answers. yet require quantitative guarantees regarding the
precision of approximate answers [YV00]. For example,
consider wireless sensor networks. e g.. [EGPS01, KKP99.
MF02. PK00]. which enable continuous monitoring of en-
vironmental conditions such as light. temperature, sound.
vibration, structural strain, etc. [MSHRO02]. Since the bat-
tery life of miniature sensors is severely limited. and ra-
dio usage 1s the dominant factor determining battery life
[MBC ™01, PK0O]. 1t 1s crucial to reduce the amount of data
transmitted. even if a small increase 1 local processing by
the sensor is required [MF02]. Many applications that rely
on sensor data can tolerate approximate answers having a
controlled degree of imprecision [MBC*01]. making our
approach ideal for reducing data transmission. Other ex-
amples with continuous queries over distributed data that
can tolerate a bounded amount of imprecision include in-
dustrial process monitoring, stock quote services. online
auctions, wide-area resource accounting. and load balanc-
ing for replicated servers [SBS*02. YV00].

Industrial and Enterprise Systems Engineering

Example 1: Network path latencies are of mterest for
infrastructure applications such as manual or automated
traffic engineering. e.g.. [VGLAOO]. or quality of service
(QoS) monitoring. Path latencies are computed by monitor-
ing the queuing latency of each router along the path. and
summing the current queue latencies together with known.
static transmission latencies. Since the queue latency at
each router generally changes every time a packet enters
or leaves the router. a narve approach could generate moni-
toring traffic whose volume far exceeds the volume of nor-
mal traffic. a situation that 1s clearly unacceptable. Fortu-
nately. path latency applications can generally tolerate ap-
proximate answers with bounded absolute numerical error
(such as latency within 5 ms of accuracy). so using our ap-
proach obtrusive exact monitoring 1s avoided.

Example 2: Network traffic volumes are of interest to or-
ganizations such as internet service providers (ISP’s), cor-
porations, or universities. for a number of applications in-
cluding security, billing. and mfrastructure planning. Since
it 1s often inconvenient or infeasible for individual organi-
zations to configure routers to perform monitoring. a sim-
ple alternative 1s to instead monitor end hosts within the
organization. We list several traffic monitoring queries that
can be performed in this manner. and then motivate their
usefulness. These queries form the basis of performance
experiments on a real network monitoring system we have
implemented; see Section 5.

UMIVMERSITY OF ILLINCIS AT URBANA-CHAMPAIGN



Definitions

Definition 1:(e-Coreset )

An e-coreset for a set of points P with respect to a center-based cost function
is a set of points S and a set of weights w:S—>R such that for any set of centers

X,
(1 —€)cost(P,X)< > w(p)cost(p,X) < (1+¢€)cost(P,X)

PES

Definition 2: ( Dimension of the function space)

Let F be a finite set of functions from a set P to R,. Then for f e F, define the
set B(f, r) ={ p: f(p) < r}. Then the dimension of the function space D(F, P) is the
smallest integer d such that forany G € P,

{GNB(f.r): [ € F.r>0} < |G|
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