
Distributed k-Means and k-Median Clustering
on General Topologies

Maria Florina Balcan, Steven Ehrlich, Yingyu Liangz

Presented by:

Aishwarya Anandan (aananda2)

Harshad Rai (hrrai2)

Rachneet Kaur (rk4)

Vipul Satone(vsatone2)

Introduction

• Era of Big Data

• Data distributed over multiple locations

– Distributed databases

– Images and videos over networks

– Sensors

• Centralized algorithms need to be scaled to
distributed settings

Motivation

• k-Means and k-Medians are center based
clustering algorithms

• Need a method to run k-means and k-
medians on distributed data

• Communication cost should be low

• Run clustering algorithms on coreset

What is a coreset/ ϵ-coreset?

• An ϵ-coreset is a weighted set of points whose
cost on any set of centers is approximately the
cost of the original data on those same
centers up to accuracy ϵ.

Original data P with centers X

Original data P with centers X

C = Cost(P , X)

ϵ-coreset P’ with centers X

C = Cost(P , X)

P’ = ϵ-coreset

ϵ-coreset P’ with centers X

C = Cost(P , X)

P’ = ϵ-coreset

C’ = σ𝑤(𝑝′)Cost(p’ , X)

ϵ-coreset P’ with centers X

C = Cost(P , X)

P’ = ϵ-coreset

C’ = σ𝑤(𝑝′)Cost(p’ , X)

(1 − ϵ)Cost(P , X) ≤ σ𝑤 𝑝′ 𝐶𝑜𝑠𝑡(𝑝′, 𝑋) ≤ (1 + 𝜖)Cost(P , X)

What is a coreset/ ϵ-coreset?

• An ϵ-coreset is a weighted set of points whose
cost on any set of centers is approximately the
cost of the original data on those same
centers up to accuracy ϵ.

• Thus an approximate solution for the coreset
is also an approximate solution for the original
data.

How are coresets constructed?

Original data P

Original data P with centers X

1) Compute constant
approximate solution

Original data P with centers X

1) Compute constant
approximate solution

2) Calculate cost of solution

Coreset P’ with centers X

1) Compute constant
approximate solution

2) Calculate cost of solution

3) Sample points with
probability proportional to
their contributions to the
cost.

Methodology

• The dataset is distributed on several nodes in an
undirected connected graph.

• A local constant approximation solution is
computed

• The total cost of local solution communicated to
the other nodes in the graph using a message
passing algorithm.

• Based on the cost of nodes and the contribution
of the data towards their local solution, the local
data are sampled to form local coresets

v4

v1

v2

v3
v5

v6

v4

v1

v2

v3
v5

v6

P1

P2

P3

P4

P5

P6

Methodology

• The dataset is distributed on several nodes in an
undirected connected graph.

• A local constant approximation solution is
computed

• The total cost of local solution communicated to
the other nodes in the graph using a message
passing algorithm.

• Based on the cost of nodes and the contribution
of the data towards their local solution, the local
data are sampled to form local coresets

v4

v1

v2

v3
v5

v6

P1, X1

P2, X2

P3, X3

P4, X4

P5, X5

P6, X6

Methodology

• The dataset is distributed on several nodes in an
undirected connected graph.

• A local constant approximation solution is
computed

• The total cost of local solution communicated to
the other nodes in the graph using a message
passing algorithm.

• Based on the cost of nodes and the contribution
of the data towards their local solution, the local
data are sampled to form local coresets

v4

v1

v2

v3
v5

v6

Methodology

• The dataset is distributed on several nodes in an
undirected connected graph.

• A local constant approximation solution is
computed

• The total cost of local solution communicated to
the other nodes in the graph using a message
passing algorithm.

• Based on the cost of nodes and the contribution
of the data towards their local solution, the local
data are sampled to form local coresets

v4

v1

v2

v3
v5

v6

S1

S2

S3

S4

S5

S6

• The message passing algorithm is called once
again to combine the local coresets.

• If each node constructs an ϵ-coreset on its
local data, then the union of these local
coresets is an ϵ-coreset for the entire data.

• The constant approximation algorithm is
applied to this global coreset to obtain the
final result.

v4

v1

v2

v3
v5

v6

• The message passing algorithm is called once
again to combine the local coresets.

• If each node constructs an ϵ-coreset on its
local data, then the union of these local
coresets is an ϵ-coreset for the entire data.

• The constant approximation algorithm is
applied to this global coreset to obtain the
final result.

• The message passing algorithm is called once
again to combine the local coresets.

• If each node constructs an ϵ-coreset on its
local data, then the union of these local
coresets is an ϵ-coreset for the entire data.

• The constant approximation algorithm is
applied to this global coreset to obtain the
final result.

Comparison to Other Coreset
Algorithms:

• Zhang et. al.[1] is limited to rooted trees.
– The communication cost to develop coresets is very

high.
– Although it is possible to find a spanning tree, when

the graph has large diameter every tree has large
height which greatly increases the size of coresets
which must be communicated across the lower levels
of the tree.

• D. Feldman et. al.[2] ignores the communication
cost and merges coresets in a parallel
computation model.

Comparison to Other Coreset
Algorithms:

• Zhang et. al.[1] is limited to rooted trees.
– The communication cost to develop coresets is very

high.
– Although it is possible to find a spanning tree, when

the graph has large diameter every tree has large
height which greatly increases the size of coresets
which must be communicated across the lower levels
of the tree.

• D. Feldman et. al.[2] ignores the communication
cost and merges coresets in a parallel
computation model.

Technical Background

Preliminaries

• Consider two points 𝑝,𝑞 ∈ 𝑅𝑑; 𝑑(𝑝, 𝑞) is the Euclidean
distance between p and q

• k-means goal: Find set of k centers 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} which
minimize the k-means cost of data 𝑃 ⊆ 𝑅𝑑

• k-means cost = 𝐶𝑜𝑠𝑡 𝑃, 𝑋 = σ𝑝∈𝑃 𝑑(𝑝, 𝑋)
2

where 𝑑 𝑝, 𝑋 = min
𝑥∈𝑋

𝑑(𝑝, 𝑋)

• If P is a weighted dataset with a weight function w, then k-
means cost = 𝐶𝑜𝑠𝑡 𝑃, 𝑋 = σ𝑝∈𝑃𝑤(𝑝)𝑑(𝑝, 𝑋)

2

• For distributed clustering, we consider
Set of n nodes 𝑉 = {𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛} which communicate on
undirected connected graph 𝐺 = 𝑉, 𝐸 , with 𝑚 = 𝐸 edges.

• Each node 𝑣𝑖 contains local set of data points 𝑃𝑖 and the
global dataset is P = 𝑖=1ڂ

𝑛 𝑃
𝑖

• (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 indicates that 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 can communicate with

each other.

• Communication cost = number of points transmitted. For
simplicity, assume that there is no latency in communication.

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Distributed coreset construction

Input: Data (distributed across different nodes)

• Pi : Set of points in node i
• Round 1 is performed on each node

followed by Round 2.
• Only cost values are communicated.

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 1

Step 1: Computing centers for local data

• Perform k-center clustering on node
data (Lloyd’s Algorithm)

• Output: Set of centers Bi for Pi

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 1

Step 2: Computing constant approximation

𝐶𝑜𝑠𝑡 𝑃𝑖 , 𝐵𝑖 =

෍

𝑝∈𝑃𝑖

𝑑 𝑝, 𝐵𝑖 𝑓𝑜𝑟 𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑠

෍

𝑝∈𝑃𝑖

𝑑 𝑝, 𝐵𝑖
2 𝑓𝑜𝑟 𝑘 − 𝑚𝑒𝑎𝑛𝑠

where 𝑑 𝑝, 𝐵𝑖 = min
𝑏∈𝐵𝑖

𝑑 𝑝, 𝑏

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 1

Step 3: Communicating cost to nodes

• 𝐶𝑜𝑠𝑡 𝑃𝑖 , 𝐵𝑖 is communicated to each node.
• Message_Passing() used for cost communication

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 2

Step 1: Computing # of points to be sampled

• t = Global coreset size
• Number of points to be sampled on node

i, 𝑡𝑖 =
𝑡 𝑐𝑜𝑠𝑡(𝑃𝑖,𝐵𝑖)

σ𝑗=1
𝑛 𝑐𝑜𝑠𝑡(𝑃𝑗,𝐵𝑗)

• Proportional to total cost contribution

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 2

Step 2: Setting of weights on local data

• Weight of data point p, 𝑚𝑝 = 2𝑐𝑜𝑠𝑡 𝑝, 𝐵𝑖 ∀ 𝑝 ∈ 𝑃𝑖
• Proportional to distance of point from corresponding

local center

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 2

Step 3: Random sampling of points to coreset

• Non-uniform random sample 𝑆𝑖 of 𝑡𝑖 points from Pi,
where for every 𝑞 ∈ 𝑃𝑖, we have

Pr q = p =
𝑚𝑝

σ𝑧∈𝑃𝑖
𝑚𝑧

• Weight on q, 𝑤𝑞 =
σ𝑖 σ𝑧∈𝑃𝑖

𝑚𝑧

𝑚𝑞 𝑡
each 𝑞 ∈ 𝑆𝑖

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Round 2

Step 4: Including local centers to coreset

• Local k-centers (𝐵𝑖) are included to the coreset
• Weight on b, 𝑤𝑏 = 𝑃𝑏 − σ𝑘∈ 𝑃𝑏∩𝑆

𝑤𝑘, where

𝑃𝑏 = { 𝑝 ∈ 𝑃𝑖: 𝑑(𝑝, 𝑏) = 𝑑(𝑝, 𝐵𝑖) }

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be
sampled

Set weights on local data

Random Sampling of points to
coreset

Inclusion of local centers to coreset

Distributed coreset construction

Input: Data (distributed across different nodes)

Output: Weighted Coreset

Objective:
• Reduce the total communication cost

• Preserve the theoretical guarantees for approximate clustering cost

Theorem 1:
There exists an algorithm that with probability at least 1 − 𝛿, the output is
an ϵ-coreset for the global dataset. The communication cost is 𝑂 𝑚𝑛 and
the number of points in the coresets (coreset size) are:

• k- means: 𝑂
1

𝜖4
𝑘𝑑 + 𝑙𝑜𝑔

1

𝛿
+ 𝑛𝑘 𝑙𝑜𝑔

𝑛𝑘

𝛿

• k-medians: 𝑂
1

𝜖2
𝑘𝑑 + 𝑙𝑜𝑔

1

𝛿
+ 𝑛𝑘

Key Parameters

• Sampling Probability: Probability with which data points are chosen to be
candidates for coresets

Pr 𝑞 = 𝑝 =
𝑚𝑝

σ𝑧∈𝑃𝑚𝑧

• Weights on coreset points: The weights on coreset points are:

𝑤𝑞 =
σ𝑖 σ𝑧∈𝑃𝑖

𝑚𝑧

𝑚𝑞 |𝑆|
for q ∈ 𝑆 and 𝑤𝑏 = 𝑃𝑏 − σ𝑘∈ 𝑃𝑏∩𝑆

𝑤𝑘 for 𝑏 ∈ B

• Function applied on the points: A suitably defined function f(p) is
selected. The function nature varies for k-means and k-medians.

Validity of Sampling probability and
Weights

Claim: For a given function f(p), the sampled coreset points are valid
approximations of the original data

To Prove: 𝐸 σ𝑞∈𝑆𝑤𝑞𝑓(𝑞) = σ 𝑝∈𝑃 𝑓(𝑝) for chosen probabilities Pr[𝑞 = 𝑝]

and weights 𝑤𝑝

Proof:

𝐸 ෍

𝑞∈𝑆

𝑤𝑞𝑓(𝑞) = ෍

𝑞∈𝑆

𝐸 𝑤𝑞𝑓(𝑞) = ෍

𝑞∈𝑆

෍

𝑝∈𝑃

Pr[𝑞 = 𝑝]𝑤𝑝𝑓(𝑝)

= σ𝑞∈𝑆 σ𝑝∈𝑃
𝑚𝑝

σ𝑧∈𝑃𝑚𝑧

σ𝑧∈𝑃𝑚𝑧

𝑚𝑝|𝑆|
𝑓 𝑝

= σ𝑞∈𝑆 σ𝑝∈𝑃
1

|𝑆|
𝑓 𝑝 = σ𝑝∈𝑃 𝑓 𝑝

Validity of f(p)
Lemma 1:

Fix a set F of functions f: P → R+. Let S be an i.i.d. sample drawn from P according to 𝑚𝑝: 𝑝 ∈ 𝑃 .

For 𝑝 ∈ 𝑃 and q ∈ 𝑆, we have 𝑞 = 𝑝 with probability
𝑚𝑝

σ𝑧∈𝑃𝑚𝑧
. Also, define 𝑤𝑝 =

σ𝑧∈𝑃𝑚𝑧

𝑚𝑝|𝑆|
. If for a

sufficiently large c, we have 𝑆 ≥
𝑐

𝜖2
(dim 𝐹, 𝑃 + log

1

𝛿
), then with a probability at least 1 - δ ,

∀ 𝑓 ∈ 𝐹: | σ𝑝∈𝑃 𝑓 𝑝 - σ𝑞∈𝑆𝑤𝑞𝑓 𝑞 | ≤ 𝜖 (σ𝑝∈𝑃𝑚𝑝)(𝑚𝑎𝑥𝑝∈𝑃
𝑓 𝑝

𝑚𝑝
)

• Set 𝑚𝑝 = 𝑚𝑎𝑥𝑓∈𝐹𝑓 𝑝 . Bounds RHS to 𝜖 σ𝑝∈𝑃𝑚𝑝

• Natural Approach: Set 𝑓𝑥 𝑝 ≔ 𝑐𝑜𝑠𝑡 𝑝, 𝑥

• Complication: Suitable upper bound not available for 𝑐𝑜𝑠𝑡 𝑝, 𝑥

• Alternative Approach: Set 𝑓𝑥 𝑝 ≔ 𝑐𝑜𝑠𝑡 𝑝, 𝑥 − 𝑐𝑜𝑠𝑡 𝑏𝑝, 𝑥 + 𝑐𝑜𝑠𝑡 𝑝, 𝑏𝑝

p

bp

x

0 ≤ 𝑓𝑥 𝑝 ≤ 2𝑐𝑜𝑠𝑡 𝑝, 𝑏𝑝

Proof of Theorem 1 for k-medians
Outline: Given that the sampling probabilities, weights on points and 𝑓 𝑝 as defined previously,
algorithm outputs an ϵ-coreset.

• Set 𝒇𝒙 𝒑 ≔ 𝒅 𝒑, 𝒙 − 𝒅 𝒃𝒑, 𝒙 + 𝒅 𝒑, 𝒃𝒑 . Then, 𝒎𝒑 = 𝟐𝒅 𝒑, 𝒃𝒑 and the conditions

stated in Lemma 1 are satisfied.

• Then,

• Substituting the definition of 𝑓𝑥 ∘ in the expression for D,

𝑫 = ෍
𝒑∈𝑷

𝒅 𝒑, 𝒙 − 𝒅 𝒃𝒑, 𝒙 + 𝒎𝒑 −෍
𝒒∈𝑺

𝒘𝒒 𝒅 𝒑, 𝒙 − 𝒅 𝒃𝒑, 𝒙 + 𝒎𝒒

• On further simplification

𝑫 = ෍
𝒑∈𝑷

𝒅 𝒑, 𝒙 −෍
𝒒∈𝑺∪𝑩

𝒘𝒒𝒅(𝒒, 𝒙) ≤ 𝑶(𝝐)෍
𝒑∈𝑷

𝒅 𝒑, 𝒙

which is guarantee that the output of algorithm 1 is an ϵ-coreset

𝑫 = ෍
𝒑∈𝑷

𝒇𝒙 𝒑 −෍
𝒒∈𝑺

𝒘𝒒𝒇𝒙 𝒒 ≤ 𝑶(𝝐)෍
𝒑∈𝑷

𝒅 𝒑, 𝒙

Proof of Theorem 1 for k-means

• Complication:

Difference term 𝑐𝑜𝑠𝑡 𝑝, 𝑥 − 𝑐𝑜𝑠𝑡 𝑏𝑝, 𝑥 = 𝑑 𝑝, 𝑥 2 − 𝑑 𝑏𝑝, 𝑥
2

is not bounded.

Conditions of Lemma 1 are not met.

• Fix: Two categories of points:

 Good points (costs approximately satisfy the triangle inequality)

 Bad points

GOOD POINTS:
– Define the good points with centers x as

– 𝐺(𝑥) = {𝑝 ∈ 𝑃 ∶ 𝑐𝑜𝑠𝑡 𝑝, 𝑥 − 𝑐𝑜𝑠𝑡 𝑏𝑝, 𝑥 ≤ Δ𝑝}

where Δ𝑝=
𝑐𝑜𝑠𝑡 𝑏𝑝,𝑥

𝜖

– These difference between the costs can be bound as before.

BAD PONTS:

For bad points, it is proven that the difference in cost may be larger than
𝑐𝑜𝑠𝑡 𝑏𝑝,𝑥

𝜖
but

will be 𝑂(𝜖 min{𝑐𝑜𝑠𝑡(𝑝, 𝑥), 𝑐𝑜𝑠𝑡(𝑏𝑝, 𝑥)}).

• Hence 𝑓𝑥 𝑝 is defined only over good points as follows:

𝒇𝒙 𝒑 = ቊ
𝒄𝒐𝒔𝒕 𝒑, 𝒙 − 𝒄𝒐𝒔𝒕 𝒃𝒑, 𝒙 + 𝜟𝒑 𝒊𝒇 𝒑 ∈ 𝑮(𝒙)

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

• Then, 𝐷 = σ𝑝∈𝑃 𝑐𝑜𝑠𝑡 𝑝, 𝑥 − σ𝑞∈𝑆∪𝐵𝑤𝑞𝑐𝑜𝑠𝑡 𝑞, 𝑥 can be decomposed into three terms

σ𝑝∈𝑃 𝑓𝑥 𝑝 − σ𝑞∈𝑆𝑤𝑞𝑓𝑥 𝑞 (1)

+σ𝑝∈𝑃\G(𝑥)[𝑐𝑜𝑠𝑡 𝑝, 𝑥 − 𝑐𝑜𝑠𝑡 𝑏𝑝, 𝑥 + Δ𝑝] (2)

−σ𝑝∈𝑃\G(𝑥) 𝑤𝑞[𝑐𝑜𝑠𝑡 𝑞, 𝑥 − 𝑐𝑜𝑠𝑡 𝑏𝑞, 𝑥 + Δ𝑞] (3)

Proof of Theorem 1 for k-means (cont.)

• It can be showed that each of these terms is bounded by
𝑶(𝝐)𝒄𝒐𝒔𝒕(𝑷, 𝒙)

• Sum of three terms is also bounded by 𝑶(𝝐)𝒄𝒐𝒔𝒕(𝑷, 𝒙)

• Then,

𝐷 = ෍
𝑝∈𝑃

𝑐𝑜𝑠𝑡 𝑝, 𝑥 −෍
𝑞∈𝑆∪𝐵

𝑤𝑞𝑐𝑜𝑠𝑡 𝑞, 𝑥 ≤ 𝑂(𝜖)𝑐𝑜𝑠𝑡(𝑃, 𝑥)

• Hence, by choosing an appropriate ϵ, the result is established.

Pseudo code

Git Link: https://github.com/harshadrai/Distributed_kMeans

https://github.com/harshadrai/Distributed_kMeans

Distributed coreset construction

Input: Data (distributed across different nodes)

Output: Weighted Coreset

Round 1

Compute centers for local data

Compute constant approximation

Communicate costs to nodes

Round 2

Compute number of points to be sampled

Set weights on local data

Random Sampling of points to coreset

Inclusion of local centers to coreset

Message Passing

Input:
Message to communicate
Neighbors to whom we wish to communicate
the message

𝐼𝑖 - Message at node 𝑖
𝑁𝑖 - Neighbors of node 𝑖

⟹ 𝑁𝑖 - Node 2

Node 𝑖
1

2

3

Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

Step 1:
Define 𝑅𝑖 = {𝐼𝑖} as the information received

𝐼𝑖 - Message at node 𝑖
𝑁𝑖 - Neighbors of node 𝑖

⟹ 𝑁𝑖 - Node 2
𝑅𝑖= {𝐼𝑖}

Node 𝑖 with message 𝐼𝑖
1

2

3

Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

Step 2:
Send 𝐼𝑖 to all its’ neighbors 𝑁𝑖

Node 𝑖 with message 𝐼𝑖
1

2

3

Message 𝐼𝑖 received

𝐼𝑖

Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

Step 3:
Check if information received 𝑅𝑖 is same as
information present at all the nodes

YES: STOP

NO: Continue to step 4

Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

Step 4:
Check if information 𝐼𝑗 ∉ 𝑅𝑖

YES: Extend set of information received by 𝐼𝑗
𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

NO: Continue to step 3

Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

Step 5:
Send 𝐼𝑗 to all its’ neighbors 𝑁𝑗 Message Passing(𝑰𝒊, 𝑵𝒊)

Define 𝑅𝑖={𝐼𝑖} as information recieved

Send 𝐼𝑖 to all neighbors 𝑁𝑖

While 𝑅𝑖 ≠ {𝐼𝑗: 1 ≤ 𝑗 ≤ 𝑛}

INPUT: Message, Neighbors

If 𝐼𝑗 ∉ 𝑅𝑖

𝑅𝑖= 𝑅𝑖 ∪ {𝐼𝑗}

Send 𝐼𝑗 to all neighbors 𝑁𝑗

YES

NO

Message Passing(𝑰𝒊, 𝑵𝒊)

1

2

3

Output:

Communication done among all the nodes

Node 𝑖

• As a result, information is shared globally.

• Communication cost at each step = Size of the message

Distributed clustering on graph

Round 1

For each node 𝑖

For each node 𝑖

Get 𝜀 local coreset 𝐷𝑖using Distributed
Coreset construction algorithm

Round 2

Call Message_Parsing (𝐷𝑖, 𝑁𝑖)

X = 𝐴𝛼 (∪ 𝐷𝑗)

Input:
Data (distributed among nodes)
𝐴𝛼 - 𝛼 approximation clustering algorithm (Lloyd’s Algorithm)

• Pi : Set of points in node 𝑖
• 𝑁𝑖: Neighbors at node 𝑖

Round 1

Step 1:
Apply Distributed Coreset construction
algorithm on data

Output:
Local weighted coresets 𝐷𝑖 on each node 𝑖

Weighted Coresets

Round 1

For each node 𝑖

For each node 𝑖

Get 𝜀 local coreset 𝐷𝑖using Distributed
Coreset construction algorithm

Round 2

Call Message_Parsing (𝐷𝑖, 𝑁𝑖)

X = 𝐴𝛼 (∪ 𝐷𝑗)

Round 2

Step 1:
Distributed coresets are communicated to each
node
Using Message Passing algorithm

Round 1

For each node 𝑖

For each node 𝑖

Get 𝜀 local coreset 𝐷𝑖using Distributed
Coreset construction algorithm

Round 2

Call Message_Parsing (𝐷𝑖, 𝑁𝑖)

X = 𝐴𝛼 (∪ 𝐷𝑗)

Round 2

Step 2:
Lloyd’s clustering algorithm is applied to
compute the centers for the global dataset

Output:

Centers of the Global dataset

Round 1

For each node 𝑖

For each node 𝑖

Get 𝜀 local coreset 𝐷𝑖using Distributed
Coreset construction algorithm

Round 2

Call Message_Parsing (𝐷𝑖, 𝑁𝑖)

X = 𝐴𝛼 (∪ 𝐷𝑗)

Random Graph
Each edge is generated independently with probability p.

For experiments, we used p = 0.3 and 10 nodes.

Preferential Graph
Preferential graphs are generated using the preferential attachment process.

Additional edges are added continuously to the graph that are distributed
among the nodes as an increasing function of the number of edges the
nodes already have.

Uniform Partitioning
Each data point from global dataset is assigned to a local site with equal
probability.

Uniform Partitioning

Randomly Sample
|𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑒𝑡|

#𝑁𝑜𝑑𝑒𝑠
points

For each node 𝑖

Assign sample to node 𝑖

P(assigning a global data point to a node 𝒊) =
𝟏

𝑵𝒐. 𝒐𝒇 𝒏𝒐𝒅𝒆𝒔

Weighted Partitioning
Each data point from global dataset is assigned to a local site with probability proportional to
the nodes’ weight.

Weighted Partitioning

Assign a weight 𝑤𝑖 chosen by |N(0,1)|

Randomly Sample 𝑤𝑖 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑒𝑡 points

For each node 𝑖

Assign sample to node 𝑖

P(assigning a global data point to a local site 𝒊) = 𝑤𝑖

Degree Partitioning

Degree Partitioning

Compute the normalized degree 𝑑𝑖

Randomly Sample 𝑑𝑖 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑒𝑡 points

For each node 𝑖

Assign sample to node 𝑖

P(assigning a global data point to a local site 𝒊) = 𝑑𝑖

Each data point from global dataset is assigned to a local site with probability
proportional to the nodes’ degree.

𝑑𝑖 =
𝐷𝑒𝑔𝑟𝑒𝑒 (𝑁𝑜𝑑𝑒 𝑖)

σ𝑗∈𝑁𝑜𝑑𝑒𝑠𝐷𝑒𝑔𝑟𝑒𝑒(𝑁𝑜𝑑𝑒 𝑗)

Results

Inferences

•For all the datasets k-means cost ratio was plotted against communication cost.

•k-means cost ratio is defined as the ratio obtained by running Lloyd’s algorithm on
the coreset and the global data respectively to get two solutions, and computing the
ratio between the costs of the two solutions over the global data.

•For all the datasets the k-means cost ratio reduced when communication cost
increases. This implies that when larger coresets are generated the solution of the
proposed algorithm converges to the k-means solution.

•Same results were obtained on Random and Preferential graph with three types of
partitioning namely, uniform partitioning, weighted partitioning and degree
partitioning.

•Results were also consistent on different dataset.

Following 4 datasets were used
1) Corel Image Features: This dataset contains image features extracted from a Corel

There are total 68040 observations.

2) Spambase Data Set: There are total 4601 observations with 58 dimensions. There were
1813 marked as spam and 2788 marked as non-spam.

3) Letter Recognition Dataset: The dataset was made to identify each of a large number
of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. There are total of 20000 observations each observation has 16 attributes.

4) SFpark dataset: The dataset contains data from three hundred parking lots in San
Francisco city fitted with Smart Meters. In the processed data the rows represents Parking
lots and columns represents time. There were total 300 rows (one for each parking lot)
and 2880 columns (24 hours x 15 time slots x 30 days).

Datasets Used

LETTER DATASET

Random Graph
Degree Partitioning

Random Graph
Weighted Partitioning

Random Graph
Uniform Partitioning

LETTER DATASET

Preferential Graph
Weighted Partitioning Preferential Graph

Uniform Partitioning

Preferential Graph
Degree Partitioning

SPAM DATASET

Preferential Graph
Degree Partitioning

Preferential Graph
Weighted Partitioning

Preferential Graph
Uniform Partitioning

COLOR HISTOGRAM DATASET

Preferential Graph
Degree Partitioning

Preferential Graph
Weighted Partitioning

Random Graph
Degree Partitioning

TRAFFIC DATASET

Random Graph
Weighted Partitioning

Random Graph
Uniform Partitioning

Preferential Graph
Uniform Partitioning

Summary

• Datasets are getting larger in size, so they are being stored on distributed
systems. Increasing the efficiency of the algorithm which work on such
distributed systems has gained importance.

• Based on the algorithm proposed in the paper a python code was written to
perform distributed k-means clustering.

• 4 different datasets from two different sources was used to evaluate the
performance of the algorithm.

• The k-means cost ratio reduces with increase in communication cost.
• We were able to replicate results given in the paper.
• Applications and connections to course

Comparison between two graphs
(Letter Random Weighted)

References:

[1] Q. Zhang, J. Liu, and W. Wang. Approximate clustering on distributed data
streams. In Proceedings of the IEEE International Conference on Data Engineering,
2008.

[2] D. Feldman, A. Sugaya, and D. Rus. An effective coreset compression algorithm
for large scale sensor networks. In Proceedings of the International Conference on
Information Processing in Sensor Networks, 2012.

[3] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[4] S.R.Boselin Prabhu, S.Sophia, S.Maheswaran, M.Navaneethakrishnan. Real-
World Applications of Distributed Clustering Mechanism in Dense Wireless Sensor
Networks, 2013.

[5] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2003.

THE END

The objective is to identify each of a large number of black-and-white rectangular pixel displays as one of the 26
capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within
these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of
integer values from 0 through 15. We typically train on the first 16000 items and then use the resulting model to
predict the letter category for the remaining 4000. See the article cited above for more details.

EXTRA

SF Parking Data

Definitions
Definition 1:(ϵ-Coreset)

An ϵ-coreset for a set of points P with respect to a center-based cost function
is a set of points S and a set of weights w:S→R such that for any set of centers
X,

Definition 2: (Dimension of the function space)

Let F be a finite set of functions from a set P to R0. Then for f ϵ F, define the
set B(f, r) ={ p: f(p) ≤ r}. Then the dimension of the function space D(F, P) is the
smallest integer d such that for any G ⊆ P,

