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Introduction: 
In the era of Big Data, it is becoming more and more difficult to store data on a single memory. Datasets are                                           
being stored on distributed systems such as distributed databases and networks. Algorithms that work on                             
distributed systems have become the need of the hour. This paper tackles the problem of clustering data on                                   
distributed datasets, specifically the k-mean and k-medians clustering. The paper introduces novel distributed                         
clustering algorithms for k-means and k-median where the data is stored over multiple locations (nodes) and                               
communication is restricted to the edges in the graph, with improvements in communication complexity while                             
preserving provable guarantees on the clustering quality. The algorithm manages to keep low communication                           
costs by communicating only the sum of the costs of approximations to the local optimal clustering on each                                   
node to all other nodes. Thus only a single value is communicated from each node to all other nodes. The                                       
algorithm then uses these costs to construct local coresets. 

Methodology: 
The dataset is distributed on several nodes in an undirected connected graph. A local constant approximation                               
solution is computed on each node and then the cost of each data point with it’s respective local solution is                                       
calculated. The total cost of each local solution is then communicated to the other nodes in the graph using a                                       
message passing algorithm. Based on the costs of all nodes and the contribution of the data towards their local                                     
solution, the local data are sampled to form a local coreset which is a set of points, together with a weight for                                           
each point, such that the cost of this weighted set approximates the cost of the original data for any set of k                                           
centers. 

Coreset Construction: 
One of the major goals of the analysis is to construct distributed coresets for k-means and k-medians algorithm. 

Intuition:  
The points close to the nearest centers can approximately be well represented by the nearest centers but the                                   
points far away cannot. Hence, to design the coreset, a constant approximation solution for the whole dataset is                                   
created and then points proportional to their contribution to the cost of the solution are sampled.  
Thus, a local approximation solution for each local dataset is created and the total costs of these local solutions                                     
are communicated. Points are then sampled proportional to their contribution to the cost of their local                               
solutions. This creates distributed coresets over the nodes consisting of sampled points and centers in the local                                 
solutions. 
Once the local coresets are constructed, the message passing algorithm is called once again to combine the local                                   
coresets. If each node constructs an ϵ-coreset on its local data, then the union of these local coresets is an                                       
ϵ-coreset for the entire data. The constant approximation algorithm is applied to this global coreset to obtain the                                   
final result. 
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Comparison to Other Coreset Algorithms: 
This paper is compared to other coreset utilizing algorithms like Zhang et. al. [1] and [2]. Zhang et. al. is limited                                         
to rooted trees. Each node constructs a local coreset and passes it to its parent node. The parent node then                                       
combines the incoming coresets and constructs a coreset on the combination of its child coresets. This process                                 
continues until the root of the tree is reached. Thus the communication cost to develop coresets is very high as                                       
local coresets are communicated over the tree. This is very large compared to the algorithm developed by the                                   
authors where only the cost of each node (a single value) is communicated across the graph to construct the                                     
distributed coresets. The accuracy a coreset needs (and thus the overall communication complexity) scales with                             
the height of the tree. Although it is possible to find a spanning tree in any communication network, when the                                       
graph has large diameter every tree has large height which greatly increases the size of coresets which must be                                     
communicated across the lower levels of the tree. [2] ignores the communication cost and merges coresets in a                                   
parallel computation model. 

Preliminaries: 

● Consider two points p, q  R∈  d

d( p, q ) is the Euclidean distance between p and q
● K-means goal: Find set of k centers X = { x1, x2, …, xk } which minimize the k-means cost of data

                P ⊆  dR

● K-means cost = Cost( P, X ) =  ( p, X  )∑
p ∈ P

d  2

where   = min( p, X  )d  ( p, x );   ∀x Xd   ∈  
● If P is a weighted dataset with a weight function w, then

K-means cost = Cost( P, X ) =  (p) d( p, X  )∑
p ∈ P

w  2

● For distributed clustering, we consider
Set of n nodes V = { 𝜈i, 1 ≤ i ≤ n } which communicate on undirected connected graph
G = ( V, E ), with m =  edgesE| |

● ( 𝜈i, 𝜈j )   E indicates that 𝜈i and 𝜈j can communicate with each other.∈  
● Communication cost = number of points transmitted. For simplicity, assume that there is no latency in

communication.

● Each node 𝜈i contains local set of data points Pi and the global dataset is P = ∪
n

i=1
P i

Technical Details: 
The following definitions are important for the details of the proofs that follow: 

Definition 1: ( Coreset ) 
An ϵ-coreset for a set of points P with respect to a center-based cost function is a set of points S and a set of 
weights   such that for any set of centers X,w : S → R  

1 )cost(P , ) (p)cost(p, ) 1 )cost(P , )( − ϵ X ≤ ∑
p∈S

w X ≤ ( + ϵ X  
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Let F be a finite set of functions from a set P to  . Then for  f define the setR ≥ 0 ,∈ F  
B( Then the dimension of the function space D(F, P) is the smallest integer d such that, r)  p (p) r}. f  = { : f ≤                                 
for any G , | {G⊆ P (f , ) f  , r }| |G| .⋂ B r :  ∈ F  ≥ 0 ≤  d

The objective is to develop an algorithm that can compute coresets for the data in a distributed fashion, while                                     
maintaining a desirable cost approximation ratio. The following theorem serves as the backbone for                           
development of the algorithm: 

Theorem 1: 
For distributed k-means and k-median clustering on a graph, there exists an algorithm that with probability at                                 

least , the union of its output on all the nodes is an ϵ-coreset for P = . The communication cost is  1 − δ                                  ∪
n

i=1
P i          

O(mn) and the following are the sizes for the  coresets obtained for the two variants: 
k-means:    O( (kd + log  ) + nk log  )1

ϵ4 δ
1

δ
nk

k-medians: O( (kd + log  ) + nk ).1
ϵ2 δ

1

In order to construct an algorithm that satisfies Theorem 1, the following parameters are defined: 
1. Sampling Probability: This is the probability with which data points are chosen to be candidates for                             

coresets and is defined as

Pr[q=p] =   mz

∑
 

z∈P
mz

where  is derived based on the function applied on points.mp  
2. Weights on coreset points: The coreset to be constructed consists of two types of points - points (S)                                 

sampled based on the probabilities described above and the centers of approximation at local nodes (B).                             
The weights on these points are obtained as follows:

=  for   and   for  .w q m |S|P  

∑
i

∑
z∈P i

mz
 S  q ∈  wb =  P|| b

|
| −  ∑

q∈P ⋂ Sb

wq  Bb ∈   

Here, denotes the number of points associated with center b in the local approximation at any  P b                              
particular node. 

3. Function applied on the points: A suitably defined function is selected. The function nature                  (p)f          
varies for k-means and k-medians.

Consider k-medians: 
Lemma 1:  

Definition 2: ( Dimension of the function space) 
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Consider K-medians : 
Lemma 1: 
Fix a set F of functions f: P . Let S be an i.i.d. sample drawn from P according to { :   For→ R ≥ 0 m  p  }.p ∈ P  

, define  =  . If for a sufficiently large c, we have  |S|  ( dim(F, P) + log  ), then p ∈ P w  p m |S|P  

∑
z∈P i

mz
 ≥ c
ϵ2 δ

1  

with a probability at least  ,  f  we have1 − δ ∀ F ,∈   

( ) (max )  (p) f (q) 
|
|
|
|

∑
p ∈ P

f −  ∑
q ∈ S

wq
|
|
|
|
 ≤ ϵ ∑

p ∈ P
mp p ∈ P  mP

f (p)

Insights: 
To get a small bound, set  =  . By defining   for everymp ax f (p)m f  ∈ F  (p) d(p, ) (b , ) d(b , )f x =  x  − d p x  +  p p  

x, a provable upper bound can be obtained as  =  . This is subsequently used to prove Lemma 2.mp d(b , )2 p p  

Lemma 2:  For k-median, the output of  the required algorithm is an   with probability at least , iforeset  ϵ − c  
 for a sufficiently large constant c. (dim(F , ) log ( )  t ≥ c

ϵ2
P +  δ

1  

Insights: 
We have 

 =  D =  (p) f (p) 
|
|
|
|

∑
p ∈ P  

f x − ∑
q ∈ S

wq x

|
|
|
|
 ≤ ϵ ∑

p ∈ P  
mp =  ϵ (b , )2 ∑

p ∈ P  
d p p ϵ (P , ) (ϵ) (p, )2 ∑

p ∈  P  
d i Bi ≤ O ∑

p ∈ P  
d x  

Upon substituting the definition of as described in Lemma 1, in the expression for D and on subsequent          (p)f x                            
simplification, it can be shown that 

 = , which is a guarantee that D =  (p) f (p) 
|
|
|
|

∑
p ∈ P  

f x − ∑
q∈ S

wq x

|
|
|
|

 (p, ) d(q, ) 
|
|
|
|

∑
p∈ P  

d x − ∑
q∈ S

wq x
|
|
|
|
≤ (ϵ)  O (p, )∑

p∈ P  
d x  

the coreset obtained is an   for the data.oreset  ϵ − c  

Consider k-means: 
Note that the above mentioned lemma 2  holds true for k-means as well when t=O( (kd + log  ) +1

ϵ4 δ
1  

nk log ) i.e. an ϵ-coreset with probability at least (1- can be constructed using    δ
nk                   ) δ        

Distributed_Coreset_Construction explained in the pseudo-code. 

Key idea for the proof: 
As an approximation to the original data points p, centers from the local approximation solutions are used to                  bp                  
prove that the error between the total cost and the weighted sample cost is approximately the error between the                                     
cost of p and its sampled cost. 
Next, using Lemma 1, it is known that this difference between the cost is small, which proves the result. 
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Proof for k-means: 
Now, the proof replicates the ideas presented above for the proof for k-median case, but the major difference is                                     
that triangle inequality cannot be applied directly to the k-means cost. For k-means, the error in the costs,                                   
|cost(p,x) cost( , x)| = | does not have an upper bound as with k-median proof.− bp (p, ) (b , )  | d x 2 − d p x 2   

To tackle the issue, we divide the points in two categories, namely good points when the costs approximately                                   
satisfy the triangle inequality and the bad points: 

● Define the good points with centers x as G(x) = { cost(p, ) ost(b , x)| }p∈ P : | x − c p  ≤ Δp

                where   =  . These points can be bound as before.Δp ϵ
cost(p, b )p

● For bad points, it is proven that the difference in cost may be larger than  but will beϵ
cost(p, b )p  

                  O( ).min{cost(p, ), cost(b , x)}  ϵ x  p   

Next,  are defined only over good points as follows:(p) fX  
 =  +   if p ,  0     otherwise(p)fX   ost(p, ) cost(b , x)c x −  p  Δp (x) ∈ G  

Then     can be decomposed into the following three terms:∑
p∈P

ost(p, )c x ∑
q∈S∪B

cost(q, )  wq x  

                                                      --- (3)∑
p∈P

(p) fX  − ∑
q∈S

f (q)  wq X  

 +   +  ]                 --- (4)∑
p∈P∖G(x)

 cost(p, ) [ x −  ost(b , x)c p  Δp  

 +  ]               --- (5) − ∑
 

q∈S∖G(x)
[ cost(q, )  wq x −  ost(b , x)c q  Δq  

Now, considering these  equations separately: 

● Equation (3) can be bounded by O(  by Lemma 1.)cost(P , x)  ϵ  

● Equation (4) can be bounded by O( ) ost(p, )  (ϵ)cost(P , x). ϵ ∑
p∈P∖G(x)

c x ≤ O  

● Equation (5) is bounded by  O( ) ost(b , x).ϵ ∑
p∈P

c p  

Since each (3), (4), (5) is bounded by O( , the sum is the same magnitude. Combining the above)cost(P , x)  ϵ   

bounds, we have |   |  .∑
p∈P

ost(p, )c x  − ∑
q∈S∪B

cost(q, )  wq x (ϵ)cost(P , x)   ≤ O   

Hence, by choosing an appropriate  ϵ ,  and bounding dim(F, P) = O(kd), the result is established.  
Hence Proved. 
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Theorem 2: 
Given an approximation for the weighted k-means and k-median subroutine, there exists an algorithm with    α −                          
probability at least outputs a (1+ - approximation solution for distributed k-means and k-median      1 − δ     )α  ϵ                
algorithm on a rooted tree of height h. 
The communication cost for two variants are as follows: 
k-means:  O(m (kd + log  ) + nk log  )1

ϵ4 δ
1

δ
nk

k-median: O(m (kd + log  ) + nk ).1
ϵ2 δ

1

Next, the paper considered a specific case for rooted trees and examined the results for the same, which are                                     
summarized below. 

Special Case: (Rooted Trees) 
The algorithm can also be applied to the rooted trees and using experiments, it is proved that it compares well to                                         
other approaches involving coresets. The following theorem summarizes the results for the case of rooted trees.  

Theorem 3: 
Given an approximation for the weighted k-means and k-median subroutine, there exists an algorithm with    α −                          
probability at least outputs a (1+ - approximation solution for distributed k-means and k-median      1 − δ     )α  ϵ                
algorithm on a rooted tree of height h. 
The communication cost for two variants are as follows: 
k-means:  O(h (kd + log  ) + nk log  )1

ε4 δ
1

δ
nk

k-median: O(h (kd + log  ) + nk ).ε
1

δ
1

Pseudo-code: 

def Message_Passing( Ii , Ni ): 
# Ii is the message, Ni are the neighbors 
Let Ri denote the information received 
Initialize Ri = { Ii }, and send Ii to all neighbors Ni 
While Ri ≠ { Ij, 1 ≤ j ≤ n }: 

If received message Ij ∉ Ri: 
Ri = Ri U { Ij } and send Ij to all neighbors 

def Distributed_Coreset_Construction( Local Datasets { Pi, 1 ≤ i ≤ n }, t, { Ni } ): 
# t is the number of points to be sampled, Ni are the neighbors of node 𝜈i 
Round 1: 
On each node 𝜈i ∈ V: 

Find set of centers Bi for Pi  
Compute a constant approximation Bi for Pi  
Communicate cost to all other nodes using Message_Passing( cost( Bi, Pi ), Ni ) 

The following theorem summarizes the distributed clustering algorithm results for a general graph. 
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Round 2: 
On each node 𝜈i ∈ V: 

Set ti = and mp = 2cost( p, Bi ) ∀p ∈ Pi
t cost( P i, Bi )

ost( P j, Bj )∑
n

j=1
c

 

# where ti is the number of points to be sampled from node 𝜈i 
# and mp is the weight of point p in Pi 
Pick a non-uniform random sample Si of ti points from Pi, where for every q ∈ Pi, 
we have q = p with probability  mp

∑
 

z∈P i
mz

Let wq =  for each q ∈ Sitmq

∑
i

∑
z∈P i

mz

 

∀b ∈ Bi, let Pb = { p ∈ Pi : d( p, b ) = d( p, Bi ) }, wb =   P|| b
|
| − ∑

q∈P ⋂ Sb

wq

Return: Distributed coreset: points Si ∪ Bi with weights { wq : q ∈ Si ∪ Bi }, 1 ≤ i ≤ n 

def Distributed_Clustering_on_Graph( { Pi }, { Ni }, A𝜶 ): 
# { Pi  } are the local datasets, 1 ≤ i ≤ n; { Ni } are the neighbors of 𝜈i, 1 ≤ i ≤ n; 
# A𝜶 is an 𝜶-approximation algorithm for weighted clustering instances 
Round 1:  
On each node 𝜈i 

Construct its local portion Di of an ϵ/2-coreset by 
Distributed_Coreset_Construction( Pi, t, Ni ) 

Round 2:  
On each node 𝜈i 

Call Message_Passing( Di, Ni ) 

X = A𝜶(  Dj )∪
j

 

Return: X 

Experiments and Results: 
Author  has  theoretically  proved  that  his  proposed  algorithm  has  better  bounds  on  communication  cost.  
Exhaustive  experiments  were  performed  to  compare this algorithm to other distributed corset algorithms.  In 
the  experiments  the  k-means  cost  of  the  solutions  produced  by  proposed  algorithm  (with  varying  
communication cost) was compared to other algorithms when they use same amount of communication.  
Experimental Methodology: 
A communication graph was first created connecting local sites and data was partitioned later into local datasets. 
Algorithm  was  evaluated  on  several  network  topologies  (random/preferential/grid)  and  partition  method  
(uniform,  similarity-based,  and  weighted).  When  the  network  is  a  grid  graph,  author  considered  the 
similarity-based  and  weighted  partitions.  When  the  network  is  a  preferential  graph,  author  considered  the  
degree-based partition. To measure the quality of coresets generated, Lloyd’s algorithm was run on coresets and 
global  data,  and  ratio  between  the  cost  of  two  solutions  over  global  data  was  computed.  The  proposed 
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algorithm was compared with the naïve method of combining a coreset of each local dataset and the algorithm                                   
of Zhang et al.[1]. 
All the datasets used are available at University of California Irvine Machine Learning Repository [3]. 
Following table represents the topologies and partition method used  on datasets : 

Sr. 
no 

Name  Number of 
Observations 

Dimensio
ns 

Number 
of clusters 

Topology 

1  Spam dataset  4601  58  10  Random/Preferential/grid (10 sites, 3 x 3 grid 
graph) 

2  Pendigits dataset  10992  16  10  Random/Preferential/grid 
(10 sites, 3 x 3 grid graph) 

3  Corel image dataset  68040  32  10  Random/Preferential/grid 
(25 sites, 5 x 5  grid graph) 

4  Letter dataset  2000  16  10  Random/Preferential/grid 
(10 sites, 3 x 3 grid graph) 

5  YearPredictionMSd 
dataset 

515345  90  50  Random/Preferential/grid  
(100 sites, 10 x 10  grid graph) 

 Table 1 : Datasets and their attributes 

Figure 1: k-means cost (normalized by baseline) v.s. communication cost over graphs. The titles indicate the 
network topology and partition method. 
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Figure 2 : k-means cost (normalized by baseline) v.s. communication cost over the spanning trees of the graphs.  
The titles indicate the network topology and partition method. 

Results : 
Results  of  the  largest  dataset,  YearPredictionMSD  are  discussed  in  the  paper.  Figure  1  shows the result over  
different  network  topologies  and  partition  methods.We  observe that the algorithms perform well with much 
smaller coreset sizes than predicted by the theoretical bounds. Figure 2 shows the results over the spanning trees 
of  the  graphs.  The  proposed  algorithm  performs  much  better  than  Zhang  et  al.[26],  achieving  about  20%  
improvement in cost. 
Dataset and Application: 
Based on this research paper code was written to generate coresets in distributed setting. The ratio of cost for 
k-means on coresets and global data was studied for different communication cost. Three datasets from
University of California- Irvine machine learning repository were used

1) Corel  Image  Features  :  This  dataset  contains  image features extracted from a Corel image collection.
Four sets of features are available based on the color histogram, color histogram layout, color moments,
and cooccurence texture. From each image four sets of features were extracted: Color Histogram, Color
Histogram  Layout,  Color  Moments,  Co-occurrence  Texture.  We  used  data  on  color  histogram  for
clustering.
HSV color space is divided into 32 subspaces (32 colors : 8 ranges of H and 4 ranges of S). The value in
each dimension in a Color Histogram of an image is the density of each color in the entire image.
Histogram intersection (overlap area between Color Histograms of two images) can be used to measure
the similarity between two images. There are total 68040 observations.

2) Spambase Data Set :  There are total 4601 observations with 58 dimensions. There were 1813 marked as
spam and 2788 marked as non-spam. These attributes are of type repetition of certain words or average
length of uninterrupted sequences of capital letters.
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3) Letter  Recognition  Dataset  :  The  dataset  was  made  to  identify  each  of  a  large  number  of
black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet.The                           
character images were based on 20 different fonts and each letter within these 20 fonts was randomly                               
distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive                             
numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of                               
integer values from 0 through 15. There are total of 20000 observations each observation has 16                             
attributes.

The fourth dataset used was collected from San Francisco Municipal Transportation Agency under FOIL -                             
Freedom of Information Law.  

1) SFpark dataset - The dataset contains data from three hundred parking lots in San Francisco city fitted
with Smart Meters. There were total 8 attributes like session start date, session end date, Payment type,                               
Net Amount paid, Post ID, Date, Parking district and Street and block address. There were about 1.6                               
million observations.It represented parking usage in about 300 parking lots in the month of April 2013.
This data was preprocessed to and made suitable for clustering application. In the processed data the                             
rows represents Parking lots and columns represents time. There was one column representing a 15 min                             
slot. There were total 300 rows (one for each parking lot) and 2880 columns (24 hours x 15 time slots x                                       
30 days).

Application: 
With  growing  volumes  of  data  it  is  getting  harder  day by day to fit it into the memory of a single computer.  
Furthermore, in many of these applications the data is inherently distributed because it is collected at different 
sites.  So, many researchers and companies are using distributed settings to handle these large volumes of data.  
Some  of  the  new  advancements  in  applications  of  distributed  clustering are as follows.[4] 1) Environmental 
monitoring applications, 2) Military and Surveillance applications, 3) Healthcare application. 
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