
Pairwise Learning to Rank for MeTA
(Track: Software)

Rachneet Kaur, Mihika Dave, Anthony Huang

Outline
- Motivation & Goal: Learning to Rank
- Stochastic Pairwise Descent Algorithm
- Implementation Details
- Software Usage & Demo
- Results
- Challenges & Future Work

Motivation
- MeTA is a C++ data science toolkit
- MeTA is used by students of UIUC, Coursera as well as the TIMAN Research

Group
- MeTA doesn’t currently support Learning To Rank
- Modern search platform like Solr have implementation for RankSVM,

LambdaMART for ranking

Motivation
- Learning to rank is a machine learning task for ranking objects
- It can be employed in many areas

- Information Retrieval (IR)
- Natural Language Processing (NLP)
- Data Mining (DM)

- Common applications include document retrieval, search, question
answering, document summarization, machine translation, etc

Goal
- We extended MeTA toolkit with Learning to Rank
- We implemented a pairwise algorithm:

- Stochastic Pairwise Descent
- Pairwise learning to rank problem can be reduced to learning a binary

classifier
- MeTA supports SVM classifier which can be thus utilized to implement the

above algorithm

Algorithm: Stochastic Pairwise Descent

*Sculley, D. "Large scale learning to rank." NIPS Workshop on Advances in Ranking, 2009.

- Link to research paper: http://www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf

Transformation to pairwise SVM

http://www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf

Indexed Sampling
- Pairs are sampled by the following method:

- Indexing the data D into nested hash table P
- Let Q - unique values in D
- For q ∈ Q, map Y [q] to set of unique y values such that (x, y, q') ∈ D with q = q’
- For q ∈ Q and y ∈ Y [q], map P[q][y] to (x, y', q′) ∈ D with q = q′ and y = y′

- Sampling from P in O(1) time
- Uniformly sample a query q from Q
- For the sampled query, we sample 2 data samples with different output labels

- Such randomly sampled pairs are used for training the classifier

Faster when D fits in the memory.

Our Implementation in Meta
- Dataset

- LETOR 3.0 dataset:
- TD2003, NP2003, HP2003, OHSUMED

- Training iterations
- 100,000 (as suggested in the paper)
- fixed for all datasets

- Optimization
- SGD

- Sampling
- Indexed Sampling

- Evaluation
- computed the following over each dataset

- Precision
- MAP
- NDCG

- compared results with those published in LETOR 3.0 paper

Our Implementation in Meta: (letor.cpp)

Return a random pair of tuple for training the svm classifier
Tuple is of type (feature_vec, label, qid)

readData()

getRandomPair()

trainSVM()

validate()

test()

evaluate()

Read data from dataset and store it as nested hash-tables

Train SVM classifier with the pair and compute
loss

Validate the learnt model

Test the model on test data

Evaluate the ranking for various measures using
average precision, NDCG, IDCG

- Link to our code: https://github.com/mihikadave/meta/tree/spd

https://github.com/mihikadave/meta/tree/spd

readData()

getRandomPair() train()

validate() test() evaluate()

get random pair from

nested hash-tables

build_dataset_nodes()

use SPD

use RankSVM

trainSVM()

train SPD

build pairwise dataset train RankSVM

evaluate trained classifiers

use trained model to
rank real documents

Software usage
- We provide 2 command line arguments:

- dataset_path: path to the dataset
- num_features: number of features in the

sample

- From the build folder run the following command

./letor -dataset_path [PATH] -num_features
[N_FEATURES]

- Running the above command will save the LETOR
model and print out the MAP, NDCG values for the
test data

Results: TD2003 dataset
Algorithm NDCG@1 NDCG@3 NDCG@5 NDCG@10

Ranking SVM 0.32 0.3441 0.3621 0.346

RankBoost 0.28 0.3246 0.3149 0.3122

FRank 0.3 0.2671 0.2468 0.269

SPD 0.347 0.3224 0.3179 0.3167

Algorithm Prec@1 Prec@3 Prec@5 Prec@10 MAP

Ranking SVM 0.32 0.2933 0.276 0.188 0.2628

RankBoost 0.28 0.28 0.232 0.1700 0.2274

FRank 0.3 0.2333 0.172 0.152 0.2031

SPD 0.3467 0.2933 0.2369 0.177 0.2374

Results: NP2003 dataset
Algorithm NDCG@1 NDCG@3 NDCG@5 NDCG@10

Ranking SVM 0.58 0.7654 0.7823 0.800

RankBoost 0.6 0.7636 0.7818 0.8068

FRank 0.54 0.7261 0.7595 0.776

SPD 0.56 0.6975 0.7176 0.7396

Algorithm Prec@1 Prec@3 Prec@5 Prec@10 MAP

Ranking SVM 0.58 0.2711 0.1707 0.092 0.6957

RankBoost 0.6 0.2689 0.1693 0.0940 0.7074

FRank 0.54 0.2533 0.168 0.090 0.6640

SPD 0.56 0.2678 0.1702 0.0925 0.6918

Results: HP2003 dataset
Algorithm NDCG@1 NDCG@3 NDCG@5 NDCG@10

Ranking SVM 0.6933 0.7749 0.7954 0.807

RankBoost 0.6667 0.792 0.8034 0.8171

FRank 0.6533 0.7432 0.778 0.797

SPD 0.6790 0.7443 0.7606 0.7857

Algorithm Prec@1 Prec@3 Prec@5 Prec@10 MAP

Ranking SVM 0.6933 0.3089 0.1987 0.104 0.7408

RankBoost 0.6667 0.3111 0.1987 0.1053 0.7330

FRank 0.6533 0.2889 0.1987 0.106 0.7095

SPD 0.6790 0.3101 0.1983 0.110 0.7373754

Results: OHSUMED dataset
Algorithm NDCG@1 NDCG@3 NDCG@5 NDCG@10

Ranking SVM 0.4958 0.4207 0.4164 0.414

RankBoost 0.4632 0.4555 0.4494 0.4302

FRank 0.53 0.4812 0.4588 0.443

SPD 0.4522 0.4594 0.4371 0.4098

Algorithm Prec@1 Prec@3 Prec@5 Prec@10 MAP

Ranking SVM 0.5974 0.5427 0.5319 0.486 0.4334

RankBoost 0.5576 0.5609 0.5447 0.4966 0.4411

FRank 0.6429 0.5925 0.5638 0.501 0.4439

SPD 0.5923 0.5623 0.5286 0.4723 0.4279

Results Overview
- Published results are similar to the results obtained by our implementation

Challenges
- Iterations in SGD

- Currently fixed at 100,000
- Good for the tested datasets, may not be optimal for other datasets
- Need to fully utilize validation samples to tune SGD iteration number

- Batch learning v.s. online learning
- Currently read whole training file and process
- Need to use dataset view in MeTA
- Can incorporate with online learning provided in MeTA

Future Work
- Finished implementing and testing the algorithm
- We can compute running time, memory
- Might be possible to further optimize by:

- Tuning the number of iterations
- Better use of validation samples

- Train LETOR model using other classification algorithms in MeTA
- libSVM, Logistic Regression, etc

- Implement other optimization methods for SPD
- Pegasos SVM, Passive-Aggressive Perceptron, ROMMA

- Other possible directions:
- Feature extraction/ingestion in ranker package

- Already in MeTA: TF, IDF, BM25, and other language model based features
- Other document or query features like PageRank

References
- Sculley, D. "Large scale learning to rank." NIPS Workshop on Advances in Ranking, 2009.

- Liu, Tie-Yan, et al. "Letor: Benchmark dataset for research on learning to rank for information
retrieval." Proceedings of SIGIR 2007 workshop on learning to rank for information retrieval. Vol. 310.
2007.

