A Neural Image Caption Generator

Presentation By: Ankit Kumar, Avinash, Daksh Saraf, Rachneet Kaur

Table of Contents

- Implementation
- Parameter Exploration
- Results
 - Qualitative Results
 - BLEU scores

Implementation

- Training and Testing dataset used: MSCOCO 2014 dataset
 - ~80K Training images
 - ~40K Testing images
 - 5 captions per image
- Loss function:
 - Cross entropy loss
- Optimizer:
 - ADAM (initial learning rate = 0.01)
 - SGD with momentum 0.9 (initial learning rate = 0.1/0.01)
 - Adaptive learning rate decay
- Early stopping

Architecture Details

• Encoder:

- Pretrained (on ImageNet) Resnet 50, Resnet 101
- Embedding dimension: 512
- Training only last 2 layers of Resnet (linear and batchnorm)

• Decoder:

- \circ 1, 3, 5 and 10 layers LSTM and GRU
- No. of hidden units experimented in RNN = 512 and 1024
- Maximum sequence length = 25

• Batch Size = 32

Implementation

- Scoring function:
 - o BLEU 1
 - BLEU 4
- Data Augmentation
 - Resize: 224 X 224
 - Horizontal Flip
 - Vertical Flip
 - Normalization
- Inference Sampling
 - Greedy search
 - Beam search (Beam sizes tried = 5)

- Vocabulary Threshold: 5
- Epochs trained:
 - ~25 training hours for each model
 variant with ~2.5 hours for each epoch
 - ~ 3 testing hours for each model
- Computational Hours used:
 - Blue Waters: 720 GPU hours
 - Google Colab: 40 GPU hours
- Regularization:
 - Dropout

Encoder	Decoder	LR	Decoder Layers	Optimizer
Resnet 101	GRU	0.1 with decay	1	SGD with momentum/ADAM
Resnet 50	LSTM	0.01 without decay	3	SGD with momentum
Resnet 50	LSTM	0.1 with decay	1	SGD with momentum
Resnet 50	LSTM	0.1 with decay	3	SGD with momentum
Resnet 50	LSTM/GRU	0.1 with decay	5	SGD with momentum
Resnet 50	LSTM/GRU	0.01 with decay	7	SGD with momentum
Resnet 50	LSTM/GRU	0.01 with decay	10	SGD with momentum

GRU vs LSTM for 1 Layer

Early Stopping

Model 1:

Resnet50 RNN unit: LSTM 1 layer 512 Hidden units SGD with momentum Training time: ~25 hours Testing time: ~3 hours

Trained for 25 epochs, best performance at 22 epochs.

1 Layer - LSTM

The BLEU score achieved with 1 Layer LSTM by using Resnet 50 as encoder on MS COCO dataset is 20.34 without beam search.

LSTM with 10 Layers

The loss seems to be pretty high compared to the single layer LSTM decoder and hence we did not proceed further with this model.

GRU Decoder with 5 Layers

- 1. The loss after 20 epochs was 1.95
- 2. The BLEU score using Greedy Search was 21.40 and using Beam Search was 21.94
- 3. This is the current best model we have.

** The results are for beam width of 5 exploring other beam widths is one of our tasks further

Results of other architectures

	Loss	BLEU	BLEU (Beam)
LSTM - 5L	2.17	20.41	21.41
GRU - 7L	2.09	21.41	20.33
LSTM - 7L	2.96	18.58	20.54

Captions

Predicted: a black and white picture of a man on a horse drawn carriage Predicted: a street sign with a picture of a car and a street sign

Predicted: a fire hydrant on a sidewalk next to a street .

Not so good captions

A person sitting on a wall ledge near the water with a bike next to him and tow other people sitting together on the wall a short distance from him.

a large clock hanging off the side of a building.

a wooden shelf on a brick wall with a storage bin under it , a laptop and lamp are on the shelf .

Future Tasks

- 1. Replicate the study on other datasets: Flickr8k/Flickr30k
- 2. Transfer learning from the model trained on MSCOCO to PASCAL
- 3. Calculate METEOR and CIDER scores for our implemented models
- 4. Try different beam sizes (3, 4, 6, 7) for Beam Search in Inference
- 5. Distributed training on BlueWaters
- 6. Try more regularization techniques (L2 weight decay for ADAM)